OBJECTIVES: This study evaluated maxillary growth and dental arch relationships at 5 and 10 years of age in patients with unilateral cleft lip and palate (UCLP) who underwent early cleft lip and palate surgery. METHODS: 28 patients with UCLP who underwent cleft lip surgery in neonatal age and cleft palate surgery at average age of 7 months without orthodontic treatment (intervention group) were measured for intercanine and intermolar distances and for dental arch length. These measurements were compared with those of 30 healthy participants in a control group. Dental arch relationships in the intervention group were evaluated by 5-YO index at 5 years and the GOSLON Yardstick score at 10 years of patients' age. RESULTS: Patients in the intervention group had significantly shorter mean intercanine distance and arch length than control patients at both 5 and 10 years of age (p<.001 for all). There were no significant differences in intermolar distance at both 5 (p = .945) and 10 years (p = .105) of patients' age. The average 5YO index increased from 2.46 to an average GOSLON 10-year score of 2.89 in intervention group. CONCLUSION: Intercanine distance and dental arch length of patients with UCLP are significantly reduced at 5 and 10 years after early cleft lip and palate surgeries compared to the healthy population. Dental arch relationships at 5 and 10 years of patients with UCLP show comparable outcomes to those reported by other cleft centers. CLINICAL SIGNIFICANCE: This study evaluates maxillary growth in UCLP patients 5 and 10 years of age who underwent early primary lip and palate surgery.
- MeSH
- dítě MeSH
- lidé MeSH
- maxila * chirurgie růst a vývoj MeSH
- maxilofaciální vývoj MeSH
- předškolní dítě MeSH
- průřezové studie MeSH
- rozštěp patra * chirurgie MeSH
- rozštěp rtu * chirurgie MeSH
- studie případů a kontrol MeSH
- zubní oblouk * růst a vývoj patologie chirurgie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: The Hueter-Volkmann law (HVL) of the response of growth plate to compression load is a basic concept in orthopaedics. However, little is known about the origin of HVL and its history. MATERIALS AND METHODS: A literature search was performed in original publications and historical sources. RESULTS: An analysis of all Volkmann ́s and Hueter ́s texts has shown that none of their publications was based on experiments, but on the data in the literature and their own clinical observations. They did not deal at all with the effect of pressure on the growth plate and mentioned this structure only marginally. The authors coined the opinion that increased pressure retards and decreased pressure accelerates bone growth. Julius Wolff criticized the HVL and concentrated all his arguments in the book "The law of bone remodeling". According to him, increased pressure leads to bone formation, decreased pressure to its resorption. The Wolff-Volkmann dispute was addressed in the German literature by a number of authors. Walther Müller in his monograph "The normal and pathological physiology of the bone" criticized Wolff for his concept of interstitial bone growth. In Müller ́s view, HVL applies to the growing bone and Wolff confuses growth with hypertrophy of the mature bone. CONCLUSION: The circumstances of the emergence of HVL are inaccurately and incompletely described in the current literature, as they are mostly taken from secondary sources. HVL, as it is presented today, is not the original formulation, but the result of a long historical evolution.
- MeSH
- dějiny 19. století MeSH
- dějiny 20. století MeSH
- lidé MeSH
- ortopedie * dějiny MeSH
- remodelace kosti fyziologie MeSH
- růstová ploténka * fyziologie MeSH
- vývoj kostí fyziologie MeSH
- Check Tag
- dějiny 19. století MeSH
- dějiny 20. století MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- přehledy MeSH
INTRODUCTION: Fibroblast growth factor 20 (Fgf20), a member of the Fgf9 subfamily, was identified as an important regulator of bone differentiation and homeostasis processes. However, the role of Fgf20 in bone physiology has not been approached yet. Here we present a comprehensive bone phenotype analysis of mice with functional ablation of Fgf20. METHODS: The study conducts an extensive analysis of Fgf20 knockout mice compared to controls, incorporating microCT scanning, volumetric analysis, Fgf9 subfamily expression and stimulation experiment and histological evaluation. RESULTS: The bone phenotype could be detected especially in the area of the lumbar and caudal part of the spine and in fingers. Regarding the spine, Fgf20-/- mice exhibited adhesions of the transverse process of the sixth lumbar vertebra to the pelvis as well as malformations in the distal part of their tails. Preaxial polydactyly and polysyndactyly in varying degrees of severity were also detected. High resolution microCT analysis of distal femurs and the fourth lumbar vertebra showed significant differences in structure and mineralization in both cortical and trabecular bone. These findings were histologically validated and may be associated with the expression of Fgf20 in chondrocytes and their progenitors. Moreover, histological sections demonstrated increased bone tissue formation, disruption of Fgf20-/- femur cartilage, and cellular-level alterations, particularly in osteoclasts. We also observed molar dysmorphology, including root taurodontism, and described variations in mineralization and dentin thickness. DISCUSSION: Our analysis provides evidence that Fgf20, together with other members of the Fgf9 subfamily, plays a crucial regulatory role in skeletal development and bone homeostasis.
- MeSH
- fenotyp MeSH
- fibroblastové růstové faktory * metabolismus genetika MeSH
- fyziologická kalcifikace MeSH
- kosti a kostní tkáň metabolismus patologie diagnostické zobrazování abnormality MeSH
- myši inbrední C57BL MeSH
- myši knockoutované * MeSH
- myši MeSH
- osteogeneze MeSH
- rentgenová mikrotomografie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Patologická kalcifikace v kůži a v podkoží je poměrně heterogenním tématem. Z etiopatogenetického hlediska jsou patologické kalcifikace rozdělovány na dystrofické, metastatické, idiopatické a iatrogenní. Zvlášť je vyčleňována kalcifylaxe. Ektopická osifikace v dermatologii je jevem vzácným, vznikajícím buď jako izolovaný nález, či jako součást řady nádorů, pro které je osifikace typickým znakem. Práce shrnuje problematiku patologické kalcifikace a ektopické osifikace v dermatologii a dermatopatologii. Článek předkládá definici, stručný popis etiopatogeneze a výčet nejčastějších onemocnění spojených s jednotlivými typy patologického ukládání vápníku v kůži, podkoží a měkkých tkáních. Text dále shrnuje problematiku osteoma cutis z hlediska klinického obrazu a histopatologie. V závěru je uveden stručný přehled diagnostických a terapeutických možností.
Pathological calcification in the skin and subcutaneous tissue is relatively heterogenous issue. From the etiopathogenetic point of view, the pathological calcifications are divided into dystrophic, metastatic, idiopathic, and iatrogenic type. Calciphylaxis is distinguished as a distinctive type. Ectopic ossification in dermatology is a rare phenomenon, which arises as an isolated finding or as a part of the range of tumours, in which the ossification is a typical feature. The article summarizes the topic of the pathological calcification and the ectopic ossification in dermatology and dermatopathology. The paper presents the definition, the brief description of the etiopathogenesis and the list of the most common diseases connected to the particular types of the pathological calcium deposition in the skin, the subcutaneous tissue and the soft tissue. The review also summarizes the problematics of the osteoma cutis from the view of the clinical picture and the histopathology. Finally, the short summary of the diagnostic and therapeutic alternatives is discussed.
- Klíčová slova
- osteoma cutis,
- MeSH
- kalcinóza * diagnóza etiologie klasifikace patologie terapie MeSH
- kůže patologie MeSH
- lidé MeSH
- osteogeneze * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
- výukové testy MeSH
Division of the growing long bone into individual basic parts, that is, diaphysis, metaphysis, physes and epiphyses, has become generally accepted and used. However, the origin of these terms is almost unknown. Therefore, we have analyzed the literature in order to identify their sources. The terms epiphysis and apophysis have been used since the time of Hippokrates, although with different meanings. During the time of Galen, the term apophysis was used to describe all types of bone processes, and epiphyses denoted articular ends. The term diaphysis denoting the middle cylindrical part of the long bone was used for the first time by Heister in 1717. The first to use the term metaphysis was Theodor Kocher in his books on gunshot wounds and on bone inflammation of 1895. On the basis of Kocher's study, Lexer published a radiological study of the vascular supply to bones in which he defined metaphyseal blood vessels as a separate group supplying a particular part of the long bone. The epiphyseal growth plate had no particular name from the time of its first description in 1836. During the second half of 19th century, this structure acquired different names. The term "physis" was therefore introduced in 1964 by the American radiologist Rubin in order to label the growth structure between metaphysis and epiphysis clearly. One year later, the term physis also appeared in the radiological literature, and during the following decades it spread in the orthopedic literature.
- MeSH
- anatomie dějiny MeSH
- dějiny 15. století MeSH
- dějiny 16. století MeSH
- dějiny 17. století MeSH
- dějiny 18. století MeSH
- dějiny 19. století MeSH
- dějiny 20. století MeSH
- dějiny starověku MeSH
- dějiny středověku MeSH
- kosti a kostní tkáň anatomie a histologie MeSH
- lidé MeSH
- terminologie jako téma * MeSH
- vývoj kostí MeSH
- Check Tag
- dějiny 15. století MeSH
- dějiny 16. století MeSH
- dějiny 17. století MeSH
- dějiny 18. století MeSH
- dějiny 19. století MeSH
- dějiny 20. století MeSH
- dějiny starověku MeSH
- dějiny středověku MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
- přehledy MeSH
BACKGROUND: Glucocorticoids are commonly used in children with different chronic diseases. Growth failure represents a so far untreatable undesired side-effect. As lithium chloride (LiCl) is known to induce cell renewal in various tissues, we hypothesized that LiCl may prevent glucocorticoid-induced growth failure. METHODS: We monitored growth of fetal rat metatarsals cultured ex-vivo with dexamethasone and/or LiCl, while molecular mechanisms were explored through RNA sequencing by implementing the differential gene expression and gene set analysis. Quantification of β-catenin in human growth plate cartilage cultured with dexamethasone and/or LiCl was added for verification. RESULTS: After 14 days of culture, the length of dexamethasone-treated fetal rat metatarsals increased by 1.4 ± 0.2 mm compared to 2.4 ± 0.3 mm in control bones (p < 0.001). The combination of LiCl and dexamethasone led to bone length increase of 1.9 ± 0.3 mm (p < 0.001 vs. dexamethasone alone). By adding lithium, genes for cell cycle and Wnt/β-catenin, Hedgehog and Notch signaling, were upregulated compared to dexamethasone alone group. CONCLUSIONS: LiCl has the potential to partially rescue from dexamethasone-induced bone growth impairment in an ex vivo model. Transcriptomics identified cell renewal and proliferation as candidates for the underlying mechanisms. Our observations may open up the development of a new treatment strategy for bone growth disorders. IMPACT: LiCl is capable to prevent glucocorticoid-induced growth failure in rat metatarsals in vitro. The accompanying drug-induced transcriptomic changes suggested cell renewal and proliferation as candidate underlying mechanisms. Wnt/beta-catenin pathway could be one of those novel mechanisms.
- MeSH
- beta-katenin * metabolismus MeSH
- chlorid lithný * farmakologie MeSH
- dexamethason * farmakologie MeSH
- glukokortikoidy farmakologie MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- metatarzální kosti * účinky léků MeSH
- potkani Sprague-Dawley MeSH
- proliferace buněk účinky léků MeSH
- růstová ploténka účinky léků metabolismus MeSH
- signální dráha Wnt účinky léků MeSH
- vývoj kostí účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: Bone growth is a fascinating process, primarily due to its complexity. Equally engaging is the history of its study, which, however, remains unknown to most anatomists and surgeons. MATERIALS AND METHODS: A literature search was performed in original publications and historical sources. RESULTS: The early history of bone growth study may be divided into two periods. Firstly, the experimental one, between 1722 and 1847, which consisted in the study of bone growth by the drilling of benchmark holes into the diaphysis, and examination of growing bones in madder-fed animals. In the course of one century, four French scientists (Henri-Louis Duhamel du Monceau, Marie-Jean-Pierre Flourens, Gaspard Auguste Brullé and Frédéric Léopold Hugueny) and one British researcher (John Hunter) proved experimentally that the longitudinal growth of long bones occurred only at its epiphyseal ends and their final shape resulted from apposition and resorption processes taking place simultaneously both on the periosteal and intramedullary surfaces of the bone. In the second, the microscopic period (1836-1875), the physeal growth cartilage was discovered and described in detail, including its importance for the longitudinal growth of long bones. The first description of growth cartilage was published by a Swiss anatomist Miescher in 1836. Subsequently, this structure was studied by a number of English, German and French anatomists and surgeons. This whole period was concluded by Alfred Kölliker ́s extensive study of bone resorption and its significance for typical bone shapes and Karl Langer ́s study of the vascular supply of the growing and mature bone. CONCLUSION: Research by French, English, German and Swiss scientists between 1727 and 1875 yielded fundamental insights into the growth of long bones, most of which are still valid today.
- MeSH
- dějiny 18. století MeSH
- dějiny 19. století MeSH
- lidé MeSH
- vývoj kostí * fyziologie MeSH
- zvířata MeSH
- Check Tag
- dějiny 18. století MeSH
- dějiny 19. století MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
OBJECTIVE: To assess modelled facial development of infants with unilateral cleft lip (CL) and cleft lip and palate (UCLP) compared to controls up to two years of age. DESIGN AND PARTICIPANTS: A total of 209 facial images of children (CL: n = 37; UCLP: n = 39; controls: n = 137) were obtained in four age categories (T0 = 0.2-0.5; T1 = 0.6-1.0; T2 = 1.1-1.5; T3 = 1.6-2.0 years) and were evaluated using stereophotogrammetry and geometric morphometry. All patients underwent lip surgery before T0, patients with UCLP underwent palatoplasty (T0, T1 before palatoplasty; T2, T3 after palatoplasty). RESULTS: In patients with CL, the forehead was significantly retracted (p ≤ 0.001), while the supraorbital and ocular regions were prominent (p ≤ 0.001). The oronasal region appeared convex (p ≤ 0.001). The lower lip and chin were non-significantly protruded. In patients with UCLP, a significantly retracted forehead and prominent supraorbital region were apparent (p ≤ 0.001). A retrusive oronasal region (p ≤ 0.001) was observed in the middle face. The chin was anteriorly protruded (p ≤ 0.01). No progression of deviations was found with increasing age. After the first year, a slight improvement in the morphological features became apparent. The shape variability of the clefts and controls overlapped, suggesting a comparable modelled facial development. CONCLUSIONS: The facial morphology of individuals with cleft was comparable to the norm. Shape deviation was apparent in the oronasal region, forehead, and chin, which minimised with increasing age even in complete clefts.
- MeSH
- fotogrammetrie * metody MeSH
- kefalometrie MeSH
- kojenec MeSH
- lidé MeSH
- maxilofaciální vývoj MeSH
- obličej anatomie a histologie abnormality MeSH
- předškolní dítě MeSH
- průřezové studie MeSH
- rozštěp patra * chirurgie diagnostické zobrazování patologie MeSH
- rozštěp rtu * chirurgie patologie MeSH
- studie případů a kontrol MeSH
- zobrazování trojrozměrné * MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Diamond-like carbon (DLC) layers are known for their high corrosion and wear resistance, low friction, and high biocompatibility. However, it is often necessary to dope DLC layers with additional chemical elements to strengthen their adhesion to the substrate. Ti-DLC layers (doped with 0.4, 2.1, 3.7, 6.6, and 12.8 at.% of Ti) were prepared by dual pulsed laser deposition, and pure DLC, glass, and polystyrene (PS) were used as controls. In vitro cell-material interactions were investigated with an emphasis on cell adhesion, proliferation, and osteogenic differentiation. We observed slightly increasing roughness and contact angle and decreasing surface free energy on Ti-DLC layers with increasing Ti content. Three-week biological experiments were performed using adipose tissue-derived stem cells (ADSCs) and bone marrow mesenchymal stem cells (bmMSCs) in vitro. The cell proliferation activity was similar or slightly higher on the Ti-doped materials than on glass and PS. Osteogenic cell differentiation on all materials was proved by collagen and osteocalcin production, ALP activity, and Ca deposition. The bmMSCs exhibited greater initial proliferation potential and an earlier onset of osteogenic differentiation than the ADSCs. The ADSCs showed a slightly higher formation of focal adhesions, higher metabolic activity, and Ca deposition with increasing Ti content.
During bone development, FasL acts not only through the traditional apoptotic mechanism regulating the amount of bone-resorbing osteoclasts, but there is also growing evidence about its effect on cell differentiation. Expression of osteoblastic factors was followed in non differentiated and differentiating primary calvarial cells obtained from FasL-deficient (gld) mice. The gld cells showed decreased expression of the key osteoblastic molecules osteocalcin (Ocn), osteopontin (Opn), and alkaline phosphatase (Alpl) in both groups. Notably, receptor activator of nuclear factor kappa-B ligand (Rankl) was unchanged in non-differentiated gld vs. wild type (wt) cells but decreased in differentiating gld cells. Osteoprotegerin (Opg) in the gld samples was increased in both groups. Opg vs. Rankl expression levels favored Opg in the case of non-differentiated cells but Rankl in differentiating ones. These results expand information on the involvement of FasL in non-apoptotic cell pathways related to osteoblastogenesis and consequently also osteoclastogenesis and pathologies such as osteoporosis.
- MeSH
- buněčná diferenciace MeSH
- glykoproteiny * metabolismus MeSH
- kosti a kostní tkáň metabolismus MeSH
- myši MeSH
- osteoblasty MeSH
- osteogeneze * MeSH
- osteoklasty metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH