Wilson disease (WD) primarily presents with hepatic and neurological symptoms. While hepatic symptoms typically precede the neurological manifestations, copper accumulates in the brain already in this patient group and leads to subclinical brain MRI abnormalities including T2 hyperintensities and atrophy. This study aimed to assess brain morphological changes in mild hepatic WD. WD patients without a history of neurologic symptoms and decompensated cirrhosis and control participants underwent brain MRI at 3T scanner including high-resolution T1-weighted images. A volumetric evaluation was conducted on the following brain regions: nucleus accumbens, caudate, pallidum, putamen, thalamus, amygdala, hippocampus, midbrain, pons, cerebellar gray matter, white matter (WM), and superior peduncle, using Freesurfer v7 software. Whole-brain analyses using voxel- and surface-based morphometry were performed using SPM12. Statistical comparisons utilized a general linear model adjusted for total intracranial volume, age, and sex. Twenty-six WD patients with mild hepatic form (30 ± 9 years [mean age ± SD]); 11 women; mean treatment duration 13 ± 12 (range 0-42) years and 28 healthy controls (33 ± 9 years; 15 women) were evaluated. Volumetric analysis revealed a significantly smaller pons volume and a trend for smaller midbrain and cerebellar WM in WD patients compared to controls. Whole-brain analysis revealed regions of reduced volume in the pons, cerebellar, and lobar WM in the WD group. No significant differences in gray matter density or cortical thickness were found. Myelin or WM in general seems vulnerable to low-level copper toxicity, with WM volume loss showing promise as a marker for assessing brain involvement in early WD stages.
- MeSH
- bílá hmota patologie diagnostické zobrazování MeSH
- dospělí MeSH
- hepatolentikulární degenerace * patologie diagnostické zobrazování MeSH
- játra patologie diagnostické zobrazování MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mladý dospělý MeSH
- mozek * patologie diagnostické zobrazování MeSH
- šedá hmota patologie diagnostické zobrazování MeSH
- studie případů a kontrol MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Spinal cord injury results in permanent neurological impairment and disability due to the absence of spontaneous regeneration. NG101, a recombinant human antibody, neutralises the neurite growth-inhibiting protein Nogo-A, promoting neural repair and motor recovery in animal models of spinal cord injury. We aimed to evaluate the efficacy of intrathecal NG101 on recovery in patients with acute cervical traumatic spinal cord injury. METHODS: This randomised, double-blind, placebo-controlled phase 2b clinical trial was done at 13 hospitals in the Czech Republic, Germany, Spain, and Switzerland. Patients aged 18-70 years with acute, complete or incomplete cervical spinal cord injury (neurological level of injury C1-C8) within 4-28 days of injury were eligible for inclusion. Participants were initially randomly assigned 1:1 to intrathecal treatment with 45 mg NG101 or placebo (phosphate-buffered saline); 18 months into the study, the ratio was adjusted to 3:1 to achieve a final distribution of 2:1 to improve enrolment and drug exposure. Randomisation was done using a centralised, computer-based randomisation system and was stratified according to nine distinct outcome categories with a validated upper extremity motor score (UEMS) prediction model based on clinical parameters at screening. Six intrathecal injections were administered every 5 days over 4 weeks, starting within 28 days of injury. Investigators, study personnel, and study participants were masked to treatment allocation. The primary outcome was change in UEMS at 6 months, analysed alongside safety in the full analysis set. The completed trial was registered at ClinicalTrials.gov, NCT03935321. FINDINGS: From May 20, 2019, to July 20, 2022, 463 patients with acute traumatic cervical spinal cord injury were screened, 334 were deemed ineligible and excluded, and 129 were randomly assigned to an intervention (80 patients in the NG101 group and 49 in the placebo group). The full analysis set comprised 78 patients from the NG101 group and 48 patients from the placebo group. 107 (85%) patients were male and 19 (15%) patients were female, with a median age of 51·5 years (IQR 30·0-60·0). Across all patients, the primary endpoint showed no significant difference between groups (with UEMS change at 6 months 1·37 [95% CI -1·44 to 4·18]; placebo group mean 19·20 [SD 11·78] at baseline and 30·91 [SD 15·49] at day 168; NG101 group mean 18·23 [SD 15·14] at baseline and 31·31 [19·54] at day 168). Treatment-related adverse events were similar between groups (nine in the NG101 group and six in the placebo group). 25 severe adverse events were reported: 18 in 11 (14%) patients in the NG101 group and seven in six (13%) patients in the placebo group. Although no treatment-related fatalities were reported in the NG101 group, one fatality not related to treatment occurred in the placebo group. Infections were the most common adverse event affecting 44 (92%) patients in the placebo group and 65 (83%) patients in the NG101 group. INTERPRETATION: NG101 did not improve UEMS in patients with acute spinal cord injury. Post-hoc subgroup analyses assessing UEMS and Spinal Cord Independence Measure of self-care in patients with motor-incomplete injury indicated potential beneficial effects that require investigation in future studies. FUNDING: EU program Horizon2020; Swiss State Secretariat for Education, Research and Innovation; Wings for Life; the Swiss Paraplegic Foundation; and the CeNeReg project of Wyss Zurich (University of Zurich and Eidgenössische Technische Hochschule Zurich).
- MeSH
- dospělí MeSH
- dvojitá slepá metoda MeSH
- krční mícha * zranění MeSH
- krční obratle MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- Nogo proteiny * MeSH
- poranění míchy * farmakoterapie MeSH
- senioři MeSH
- spinální injekce * MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze II MeSH
- multicentrická studie MeSH
- randomizované kontrolované studie MeSH
Ageing is a complex phenomenon affecting a wide range of coexisting biological processes. The homogeneity of the studied population is an essential parameter for valid interpretations of outcomes. The presented study capitalises on the MRI data available in the Human Connectome Project-Aging (HCP-A) and, within individuals over 55 years of age who passed the HCP-A section criteria, compares a subgroup of 37 apparently neurocognitively healthy individuals selected based on stringent criteria with 37 age and sex-matched individuals still representative of typical ageing but who did not pass the stringent definition of neurocognitively healthy. Specifically, structural scans, diffusion weighted imaging and T1w/T2w ratio were utilised. Furthermore, data of 26 HCP-A participants older than 90 years as notional 'super-agers' were analysed. The relationship of age and several microstructural MRI metrics (T1w/T2w ratio, mean diffusivity, intracellular volume fraction and free water volume fraction) differed significantly between typical and healthy ageing cohort in areas highly relevant for ageing such as hippocampus, prefrontal and temporal cortex and cerebellum. However, the trajectories of the healthy ageing population did not show substantially better overlap with the findings in people older than 90 than those of the typical population. Therefore, caution must be exercised in the choice of adequate study group characteristics relevant for respective ageing-related hypotheses. Contrary to typical ageing group, the healthy ageing cohort may show generally stable levels of several MRI metrics of interest.
- MeSH
- kognice * fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mozek diagnostické zobrazování MeSH
- šedá hmota * diagnostické zobrazování MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- stárnutí * fyziologie MeSH
- zdravé stárnutí fyziologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Cerebellar atrophy is a characteristic sign of late-onset Tay-Sachs disease (LOTS). Other structural neuroimaging abnormalities are inconsistently reported. Our study aimed to perform a detailed whole-brain analysis and quantitatively characterize morphometric changes in LOTS patients. Fourteen patients (8 M/6F) with LOTS from three centers were included in this retrospective study. For morphometric brain analyses, we used deformation-based morphometry, voxel-based morphometry, surface-based morphometry, and spatially unbiased cerebellar atlas template. The quantitative whole-brain morphometric analysis confirmed the finding of profound pontocerebellar atrophy with most affected cerebellar lobules V and VI in LOTS patients. Additionally, the atrophy of structures mainly involved in motor control, including bilateral ventral and lateral thalamic nuclei, primary motor and sensory cortex, supplementary motor area, and white matter regions containing corticospinal tract, was present. The atrophy of the right amygdala, hippocampus, and regions of occipital, parietal and temporal white matter was also observed in LOTS patients in contrast with controls (p < 0.05, FWE corrected). Patients with dysarthria and those initially presenting with ataxia had more severe cerebellar atrophy. Our results show predominant impairment of cerebellar regions responsible for speech and hand motor function in LOTS patients. Widespread morphological changes of motor cortical and subcortical regions and tracts in white matter indicate abnormalities in central motor circuits likely coresponsible for impaired speech and motor function.
BACKGROUND: We recently described magnetic resonance imaging (MRI) features of children with transverse myelitis (TM) at first event with important and unique differences depending on the underlying disease entity. OBJECTIVE: To study the resolution of lesions over time in children with TM due to MOG-antibody associated disorders (MOGAD), multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD) or double seronegative TM. PATIENTS AND METHODS: In this prospective study, 78 children from 29 different medical centres with TM as part of MOGAD (n = 34), MS (n = 20), NMOSD (n = 5) and in double seronegative children (n = 19) were included. A grading system consisting of 4 grades (grade 0 = complete resolution; grade 3 = no resolution at all) was used to compare the degree of lesion resolution over time in the different disease entities. Time to lesion resolution was evaluated by Kaplan-Meier statistics and log-rank test. RESULTS: Significant differences of the interval between first MRI until resolution of lesions were observed between the four disease entities. The most rapid and complete resolution was seen in MOGAD, followed by double seronegative, MS and NMOSD. Median periods until total resolution (grade 0) were 191 days (MOGAD), 750 days (double seronegative), 1117 days (MS), while none of the patients with NMOSD reached a complete resolution during the observation period. The better prognosis of MOGAD compared to MS was independent of sex, age, oligoclonal bands and cell count in the multivariate Cox analysis (P < 0.001). CONCLUSION: Children with TM and antibodies to MOG show a faster resolution of radiological lesions compared to children with MS and NMOSD.
- MeSH
- autoprotilátky krev MeSH
- dítě MeSH
- glykoprotein v myelinu oligodendrocytů imunologie MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mícha diagnostické zobrazování patologie MeSH
- mladiství MeSH
- následné studie MeSH
- neuromyelitis optica * diagnostické zobrazování MeSH
- předškolní dítě MeSH
- prospektivní studie MeSH
- roztroušená skleróza * diagnostické zobrazování patologie MeSH
- transverzální myelitida * diagnostické zobrazování MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
OBJECTIVES: Microstructural characterization of patients with multiple sclerosis (MS) has been shown to correlate better with disability compared to conventional radiological biomarkers. Quantitative MRI provides effective means to characterize microstructural brain tissue changes both in lesions and normal-appearing brain tissue. However, the impact of the location of microstructural alterations in terms of neuronal pathways has not been thoroughly explored so far. Here, we study the extent and the location of tissue changes probed using quantitative MRI along white matter (WM) tracts extracted from a connectivity atlas. METHODS: We quantified voxel-wise T1 tissue alterations compared to normative values in a cohort of 99 MS patients. For each WM tract, we extracted metrics reflecting tissue alterations both in lesions and normal-appearing WM and correlated these with cross-sectional disability and disability evolution after 2 years. RESULTS: In early MS patients, T1 alterations in normal-appearing WM correlated better with disability evolution compared to cross-sectional disability. Further, the presence of lesions in supratentorial tracts was more strongly associated with cross-sectional disability, while microstructural alterations in infratentorial pathways yielded higher correlations with disability evolution. In progressive patients, all major WM pathways contributed similarly to explaining disability, and correlations with disability evolution were generally poor. CONCLUSIONS: We showed that microstructural changes evaluated in specific WM pathways contribute to explaining future disability in early MS, hence highlighting the potential of tract-wise analyses in monitoring disease progression. Further, the proposed technique allows to estimate WM tract-specific microstructural characteristics in clinically compatible acquisition times, without the need for advanced diffusion imaging.
- MeSH
- bílá hmota * diagnostické zobrazování patologie MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mozek diagnostické zobrazování patologie MeSH
- průřezové studie MeSH
- roztroušená skleróza * diagnostické zobrazování patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
White matter (WM) development has been studied extensively, but most studies used cross-sectional data, and to the best of our knowledge, none of them considered the possible effects of biological (vs. chronological) age. Therefore, we conducted a longitudinal multimodal study of WM development and studied changes in fractional anisotropy (FA) in the different WM tracts and their relationship with cortical thickness-based measures of brain aging in young adulthood. A total of 105 participants from the European Longitudinal Study of Pregnancy and Childhood (ELSPAC) prenatal birth cohort underwent magnetic resonance imaging (MRI) at the age of 23-24, and the age of 28-30 years. At both time points, FA in the different WM tracts was extracted using the JHU atlas, and brain age gap estimate (BrainAGE) was calculated using the Neuroanatomical Age Prediction using R (NAPR) model based on cortical thickness maps. Changes in FA and the speed of cortical brain aging were calculated as the difference between the respective variables in the late vs. early 20s. We demonstrated tract-specific increases as well as decreases in FA, which indicate that the WM microstructure continues to develop in the third decade of life. Moreover, the significant interaction between the speed of cortical brain aging, tract, and sex on mean FA revealed that a greater speed of cortical brain aging in young adulthood predicted greater decreases in FA in the bilateral cingulum and left superior longitudinal fasciculus in young adult men. Overall, these changes in FA in the WM tracts in young adulthood point out the protracted development of WM microstructure, particularly in men.
- MeSH
- anizotropie MeSH
- bílá hmota * diagnostické zobrazování růst a vývoj MeSH
- dospělí MeSH
- lidé MeSH
- longitudinální studie MeSH
- mladý dospělý MeSH
- mozek * růst a vývoj diagnostické zobrazování anatomie a histologie MeSH
- stárnutí * fyziologie MeSH
- zobrazování difuzních tenzorů metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Farber disease (FD) and spinal muscular atrophy with progressive myoclonic epilepsy (SMA-PME) are ultra-rare lysosomal storage disorders caused by deficient acid ceramidase (ACDase) activity. Although both conditions are caused by mutations in the ASAH1 gene, clinical presentations differ considerably. FD patients usually die in childhood, while SMA-PME patients can live until adulthood. There is no treatment for FD or SMA-PME. Hematopoietic stem cell transplantation (HSCT) and gene therapy strategies for the treatment of ACDase deficiency are being investigated. We have previously generated and characterized mouse models of both FD and SMA-PME that recapitulate the symptoms described in patients. Here, we show that HSCT improves lifespan, behavior, hematopoietic system anomalies, and plasma cytokine levels and significantly reduces histiocytic infiltration and ceramide accumulation throughout the tissues investigated, including the CNS, in both models of ACDase-deficient mice. HSCT was also successful in preventing lesion development and significant demyelination of the spinal cord seen in SMA-PME mice. Importantly, we note that only early and generally pre-symptomatic treatment was effective, and kidney impairment was not improved in either model.
- MeSH
- ceramidy metabolismus MeSH
- Farberova nemoc * terapie genetika MeSH
- kyselá ceramidasa * genetika metabolismus MeSH
- lidé MeSH
- mícha metabolismus patologie MeSH
- modely nemocí na zvířatech MeSH
- myoklonické epilepsie progresivní genetika terapie metabolismus MeSH
- myši knockoutované MeSH
- myši MeSH
- transplantace hematopoetických kmenových buněk * metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Formyl peptide receptor 2 (FPR2) is a receptor for formylated peptides and specific pro-resolving mediators, and is involved in various inflammatory processes. Here, we aimed to elucidate the role of FPR2 in dendritic cell (DC) function and autoimmunity-related central nervous system (CNS) inflammation by using the experimental autoimmune encephalomyelitis (EAE) model. EAE induction was accompanied by increased Fpr2 mRNA expression in the spinal cord. FPR2-deficient (Fpr2KO) mice displayed delayed onset of EAE compared to wild-type (WT) mice, associated with reduced frequencies of Th17 cells in the inflamed spinal cord at the early stage of the disease. However, FPR2 deficiency did not affect EAE severity after the disease reached its peak. FPR2 deficiency in mature DCs resulted in decreased expression of Th17 polarizing cytokines IL6, IL23p19, IL1β, and thereby diminished the DC-mediated activation of Th17 cell differentiation. LPS-activated FPR2-deficient DCs showed upregulated Nos2 expression and nitric oxide (NO) production, as well as reduced oxygen consumption rate and impaired mitochondrial function, including decreased mitochondrial superoxide levels, lower mitochondrial membrane potential and diminished expression of genes related to the tricarboxylic acid cycle and genes related to the electron transport chain, as compared to WT DCs. Treatment with a NO inhibitor reversed the reduced Th17 cell differentiation in the presence of FPR2-deficient DCs. Together, by regulating DC metabolism, FPR2 enhances the production of DC-derived Th17-polarizing cytokines and hence Th17 cell differentiation in the context of neuroinflammation.
- MeSH
- buněčná diferenciace * MeSH
- buňky Th17 * imunologie metabolismus MeSH
- cytokiny metabolismus MeSH
- dendritické buňky * imunologie metabolismus MeSH
- encefalomyelitida autoimunitní experimentální * imunologie metabolismus MeSH
- mícha imunologie metabolismus MeSH
- myši inbrední C57BL MeSH
- myši knockoutované * MeSH
- myši MeSH
- neurozánětlivé nemoci imunologie metabolismus MeSH
- receptory pro formylované peptidy * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Machine learning can be used to define subtypes of psychiatric conditions based on shared biological foundations of mental disorders. Here we analyzed cross-sectional brain images from 4,222 individuals with schizophrenia and 7038 healthy subjects pooled across 41 international cohorts from the ENIGMA, non-ENIGMA cohorts and public datasets. Using the Subtype and Stage Inference (SuStaIn) algorithm, we identify two distinct neurostructural subgroups by mapping the spatial and temporal 'trajectory' of gray matter change in schizophrenia. Subgroup 1 was characterized by an early cortical-predominant loss with enlarged striatum, whereas subgroup 2 displayed an early subcortical-predominant loss in the hippocampus, striatum and other subcortical regions. We confirmed the reproducibility of the two neurostructural subtypes across various sample sites, including Europe, North America and East Asia. This imaging-based taxonomy holds the potential to identify individuals with shared neurobiological attributes, thereby suggesting the viability of redefining existing disorder constructs based on biological factors.
- MeSH
- algoritmy * MeSH
- dospělí MeSH
- hipokampus diagnostické zobrazování patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mozek diagnostické zobrazování patologie MeSH
- neurozobrazování MeSH
- průřezové studie MeSH
- reprodukovatelnost výsledků MeSH
- schizofrenie * diagnostické zobrazování patologie MeSH
- šedá hmota * diagnostické zobrazování patologie MeSH
- strojové učení MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Severní Amerika MeSH