Pneumocystis pneumonia (PCP) is a life-threatening complication after allogeneic hematopoietic cell transplantation (allo-HCT). However, allo-HCT procedures have evolved toward older patients, unrelated donors, and reduced-intensity conditioning, possibly modifying the risks. Polymerase chain reaction (PCR), widely used nowadays, is more sensitive than microscopy diagnostic methods. This study aimed to assess the factors associated with PCP in allo-HCT recipients within 2 years of HCT and managed according to current procedures. This multicenter, nested case-control study included PCP cases diagnosed by PCR, cytology, or immunofluorescence on bronchoalveolar lavage fluid between 2016 and 2018. Two controls per case were selected from the ProMISe registry and matched for the center, transplant date, and underlying disease. Fifty-two cases and 104 controls were included among the 5452 patients who underwent allo-HCT in the participating centers. PCP occurred at a median of 11.5 months after transplantation. The mortality rate was 24% on day 30 after the PCP diagnosis and 37% on day 90. The clinical presentation and mortality rates of the 24 patients diagnosed using only PCR were not different from those diagnosed with microscopy methods. Our study demonstrates a substantial incidence of, and mortality from, PCP, after allogeneic HCT despite well-established prophylactic approaches. In our experience, PCP nowadays occurs later after transplant than previously reported, justifying the prolongation of prophylaxis after six months in many cases. Allo-HCT recipients diagnosed with PCR as the only PCP marker should benefit from specific treatment as for other patients.
- MeSH
- infekční nemoci * etiologie MeSH
- kostní dřeň MeSH
- lidé MeSH
- pneumocystová pneumonie * epidemiologie etiologie diagnóza MeSH
- rizikové faktory MeSH
- studie případů a kontrol MeSH
- transplantace hematopoetických kmenových buněk * škodlivé účinky metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
INTRODUCTION: The rapid advancement of artificial intelligence and big data analytics, including descriptive, diagnostic, predictive, and prescriptive analytics, has the potential to revolutionize many areas of medicine, including nephrology and dialysis. Artificial intelligence and big data analytics can be used to analyze large amounts of patient medical records, including laboratory results and imaging studies, to improve the accuracy of diagnosis, enhance early detection, identify patterns and trends, and personalize treatment plans for patients with kidney disease. Additionally, artificial intelligence and big data analytics can be used to identify patients' treatment who are not receiving adequate care, highlighting care inefficiencies in the dialysis provider, optimizing patient outcomes, reducing healthcare costs, and consequently creating values for all the involved stakeholders. OBJECTIVES: We present the results of a comprehensive survey aimed at exploring the attitudes of European physicians from eight countries working within a major hemodialysis network (Fresenius Medical Care NephroCare) toward the application of artificial intelligence in clinical practice. METHODS: An electronic survey on the implementation of artificial intelligence in hemodialysis clinics was distributed to 1,067 physicians. Of the 1,067 individuals invited to participate in the study, 404 (37.9%) professionals agreed to participate in the survey. RESULTS: The survey showed that a substantial proportion of respondents believe that artificial intelligence has the potential to support physicians in reducing medical malpractice or mistakes. CONCLUSION: While artificial intelligence's potential benefits are recognized in reducing medical errors and improving decision-making, concerns about treatment plan consistency, personalization, privacy, and the human aspects of patient care persist. Addressing these concerns will be crucial for successfully integrating artificial intelligence solutions in nephrology practice.
- MeSH
- dialýza ledvin MeSH
- lidé MeSH
- nefrologie * MeSH
- nefrologové MeSH
- průzkumy a dotazníky MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Measurable residual disease (MRD) monitoring in childhood acute myeloid leukemia (AML) is used to assess response to treatment and for early detection of imminent relapse. In childhood AML, MRD is typically evaluated using flow cytometry, or by quantitative detection of leukemia-specific aberrations at the mRNA level. Both methods, however, have significant limitations. Recently, we demonstrated the feasibility of MRD monitoring in selected subgroups of AML at the genomic DNA (gDNA) level. To evaluate the potential of gDNA-based MRD monitoring across all AML subtypes, we conducted a comprehensive analysis involving 133 consecutively diagnosed children. Integrating next-generation sequencing into the diagnostic process, we identified (presumed) primary genetic aberrations suitable as MRD targets in 97% of patients. We developed patient-specific quantification assays and monitored MRD in 122 children. The gDNA-based MRD monitoring via quantification of primary aberrations with a sensitivity of at least 10-4 was possible in 86% of patients; via quantification with sensitivity of 5 × 10-4, of secondary aberrations, or at the mRNA level in an additional 8%. Importantly, gDNA-based MRD exhibited independent prognostic value at early time-points in patients stratified to intermediate-/high-risk treatment arms. Our study demonstrates the broad applicability, feasibility, and clinical significance of gDNA-based MRD monitoring in childhood AML.
- MeSH
- akutní myeloidní leukemie * diagnóza genetika terapie MeSH
- dítě MeSH
- genomika MeSH
- kohortové studie MeSH
- lidé MeSH
- messenger RNA genetika MeSH
- prognóza MeSH
- průtoková cytometrie MeSH
- recidiva MeSH
- reziduální nádor diagnóza genetika MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition characterised by a progressive loss of motor neurons controlling voluntary muscle activity. The disease manifests through a variety of motor dysfunctions related to the extent of damage and loss of neurons at different anatomical locations. Despite extensive research, it remains unclear why some motor neurons are especially susceptible to the disease, while others are affected less or even spared. In this article, we review the neurobiological mechanisms, neurochemical profiles, and morpho-functional characteristics of various motor neuron groups and types of motor units implicated in their differential exposure to degeneration. We discuss specific cell-autonomous (intrinsic) and extrinsic factors influencing the vulnerability gradient of motor units and motor neuron types to ALS, with their impact on disease manifestation, course, and prognosis, as revealed in preclinical and clinical studies. We consider the outstanding challenges and emerging opportunities for interpreting the phenotypic and mechanistic variability of the disease to identify targets for clinical interventions.
- MeSH
- amyotrofická laterální skleróza * MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- motorické neurony MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- MeSH
- blokáda Tawarova raménka etiologie terapie MeSH
- elektrokardiografie MeSH
- funkce levé komory srdeční MeSH
- Hisův svazek * MeSH
- kardiomyopatie * etiologie terapie MeSH
- kardiostimulace umělá škodlivé účinky MeSH
- lidé MeSH
- srdeční komory MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
2 svazky : barevné ilustrace ; 29 cm
- MeSH
- nemoci srdce * terapie MeSH
- plicní hypertenze MeSH
- rozšířená kardiopulmonální recuscitace MeSH
- transplantace plic MeSH
- transplantace srdce MeSH
- Publikační typ
- učebnice MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Publikační typ
- kolektivní monografie
Background/Objectives: Dual-modality probes, combining positron emission tomography (PET) with fluorescence imaging (FI) capabilities in a single molecule, are of high relevance for the accurate staging and guided resection of tumours. We herein present a pair of candidates targeting the cholecystokinin-2 receptor (CCK2R), namely [68Ga]Ga-CyTMG and [68Ga]Ga-CyFMG. In these probes, the SulfoCy5.5 fluorophore and two units of a CCK2R-binding motif are coupled to the chelator acting as a core scaffold, triazacyclononane-phosphinic acid (TRAP), and Fusarinine C (FSC), respectively. Using this approach, we investigated the influence of these chelators on the final properties. Methods: The synthetic strategy to both precursors was based on the stoichiometric conjugation of the components via click chemistry. The characterization in vitro included the evaluation of the CCK2R affinity and internalization in A431-CCK2R cells. Ex vivo biodistribution as well as PET and FI studies were performed in xenografted mice. Results: 68Ga labelling was accomplished with high radiochemical yield and purity for both precursors. A CCK2R affinity in the subnanomolar range of the conjugates and a receptor-specific uptake of the radioligands in cells were observed. In A431-CCK2R/A431-mock xenografted mice, the investigated compounds showed specific accumulation in the tumours and reduced off-target uptake compared to a previously developed compound. Higher accumulation and prolonged retention in the kidneys were observed for [68Ga]Ga-CyTMG when compared to [68Ga]Ga-CyFMG. Conclusions: Despite the promising targeting properties observed, further probe optimization is required to achieve enhanced imaging contrast at early timepoints. Additionally, the results indicate a distinct influence of the chelators in terms of renal accumulation and retention.
- Publikační typ
- časopisecké články MeSH