Poly(ɛ-caprolactone) (PCL) is a biocompatible, biodegradable, and highly mechanically resilient FDA-approved material (for specific biomedical applications, e.g. as drug delivery devices, in sutures, or as an adhesion barrier), rendering it a promising candidate to serve bone tissue engineering. However, in vivo monitoring of PCL-based implants, as well as biodegradable implants in general, and their degradation profiles pose a significant challenge, hindering further development in the tissue engineering field and subsequent clinical adoption. To address this, photo-cross-linkable mechanically resilient PCL networks are developed and functionalized with a radiopaque monomer, 5-acrylamido-2,4,6-triiodoisophthalic acid (AATIPA), to enable non-destructive in vivo monitoring of PCL-based implants. The covalent incorporation of AATIPA into the crosslinked PCL networks does not significantly affect their crosslinking kinetics, mechanical properties, or thermal properties, but it increases their hydrolysis rate and radiopacity. Complex and porous 3D designs of radiopaque PCL networks can be effectively monitored in vivo. This work paves the way toward non-invasive monitoring of in vivo degradation profiles and early detection of potential implant malfunctions.
- MeSH
- Biocompatible Materials chemistry MeSH
- Mice MeSH
- Polyesters * chemistry MeSH
- Porosity MeSH
- Materials Testing MeSH
- Tissue Engineering methods MeSH
- Tissue Scaffolds * chemistry MeSH
- Absorbable Implants MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Super-resolution (SR) microscopy is a cutting-edge method that can provide detailed structural information with high resolution. However, the thickness of the specimen has been a major limitation for SR methods, and large biological structures have posed a challenge. To overcome this, the key step is to optimise sample preparation to ensure optical homogeneity and clarity, which can enhance the capabilities of SR methods for the acquisition of thicker structures. Oocytes are the largest cells in the mammalian body and are crucial objects in reproductive biology. They are especially useful for studying membrane proteins. However, oocytes are extremely fragile and sensitive to mechanical manipulation and osmotic shocks, making sample preparation a critical and challenging step. We present an innovative, simple and sensitive approach to oocyte sample preparation for 3D STED acquisition. This involves alcohol dehydration and mounting into a high refractive index medium. This extended preparation procedure allowed us to successfully obtain a unique two-channel 3D STED SR image of an entire mouse oocyte. By optimising sample preparation, it is possible to overcome current limitations of SR methods and obtain high-resolution images of large biological structures, such as oocytes, in order to study fundamental biological processes. Lay Abstract: Super-resolution (SR) microscopy is a cutting-edge tool that allows scientists to view incredibly fine details in biological samples. However, it struggles with larger, thicker specimens, as they need to be optically clear and uniform for the best imaging results. In this study, we refined the sample preparation process to make it more suitable for SR microscopy. Our method includes carefully dehydrating biological samples with alcohol and then transferring them into a mounting medium that enhances optical clarity. This improved protocol enables high-resolution imaging of thick biological structures, which was previously challenging. By optimizing this preparation method, we hope to expand the use of SR microscopy for studying large biological samples, helping scientists better understand complex biological structures.
L eishmaniasis is a prevalent disease that impacts 98 countries and territories, mainly in Africa, Asia, and South America. It can cause substantial illness and death, particularly in its visceral manifestation that can be specifically targeted in the development of medications to combat leishmaniasis. This study has found natural compounds with possible inhibitory activity against APX using a reliable and accurate QSAR model. Despite the severe side effects of current treatments and the absence of an effective vaccination, these compounds show promise as a potential treatment for the disease. Nine hit compounds were found, and subsequent molecular docking was performed. Estradiol cypionate showed the lowest binding energy (- 10.5 kcal/mol), thus showing the strongest binding, and also had the strongest binding affinity, with a ΔGTotal of - 26.31 ± 3.01 kcal/mol, second only to the control molecule. Additionally, three hits viz. cloxacillin-sodium (- 16.57 ± 2.89 kcal/mol), cinchonidine (- 16.04 ± 3.27 kcal/mol), and quinine hydrochloride dihydrate (13.38 ± 1.06 kcal/mol) also showed significant binding affinity. Multiple interactions between drugs and active site residues demonstrated a substantial binding affinity with the target protein. The identified compounds exhibited drug-like effects and were orally bioavailable based on their ADME-toxicology features. Overall, estradiol cypionate, cloxacillin sodium, cinchonidine, and quinine hydrochloride dihydrate all exhibited inhibitory effects on the APX enzyme of Leishmania donovani. These results suggest that further investigation is needed to explore the potential of developing novel anti-leishmaniasis drugs using these compounds.
- MeSH
- Antiprotozoal Agents * pharmacology chemistry MeSH
- Enzyme Inhibitors * pharmacology chemistry MeSH
- Quantitative Structure-Activity Relationship MeSH
- Leishmaniasis * drug therapy MeSH
- Humans MeSH
- Molecular Docking Simulation MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Glioblastomas are aggressive brain tumors for which effective therapy is still lacking, resulting in dismal survival rates. These tumors display significant phenotypic plasticity, harboring diverse cell populations ranging from tumor core cells to dispersed, highly invasive cells. Neuron navigator 3 (NAV3), a microtubule-associated protein affecting microtubule growth and dynamics, is downregulated in various cancers, including glioblastoma, and has thus been considered a tumor suppressor. In this study, we challenge this designation and unveil distinct expression patterns of NAV3 across different invasion phenotypes. Using glioblastoma cell lines and patient-derived glioma stem-like cell cultures, we disclose an upregulation of NAV3 in invading glioblastoma cells, contrasting with its lower expression in cells residing in tumor spheroid cores. Furthermore, we establish an association between low and high NAV3 expression and the amoeboid and mesenchymal invasive phenotype, respectively, and demonstrate that overexpression of NAV3 directly stimulates glioblastoma invasive behavior in both 2D and 3D environments. Consistently, we observed increased NAV3 expression in cells migrating along blood vessels in mouse xenografts. Overall, our results shed light on the role of NAV3 in glioblastoma invasion, providing insights into this lethal aspect of glioblastoma behavior.
- MeSH
- Phenotype * MeSH
- Glioblastoma * pathology genetics metabolism MeSH
- Neoplasm Invasiveness * genetics MeSH
- Humans MeSH
- Membrane Proteins MeSH
- Microtubules metabolism MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Brain Neoplasms * pathology genetics metabolism MeSH
- Cell Movement genetics physiology MeSH
- Nerve Tissue Proteins metabolism genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Pancreas is a vital gland of gastrointestinal system with exocrine and endocrine secretory functions, interweaved into essential metabolic circuitries of the human body. Pancreatic ductal adenocarcinoma (PDAC) represents one of the most lethal malignancies, with a 5-year survival rate of 11%. This poor prognosis is primarily attributed to the absence of early symptoms, rapid metastatic dissemination, and the limited efficacy of current therapeutic interventions. Despite recent advancements in understanding the etiopathogenesis and treatment of PDAC, there remains a pressing need for improved individualized models, identification of novel molecular targets, and development of unbiased predictors of disease progression. Here we aim to explore the concept of precision medicine utilizing 3-dimensional, patient-specific cellular models of pancreatic tumors and discuss their potential applications in uncovering novel druggable molecular targets and predicting clinical parameters for individual patients.
- MeSH
- Carcinoma, Pancreatic Ductal * pathology genetics metabolism MeSH
- Precision Medicine * methods MeSH
- Humans MeSH
- Pancreatic Neoplasms * pathology genetics MeSH
- Cell Culture Techniques, Three Dimensional methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
PURPOSE: Minimally invasive surgery (MIS) in neonates and infants presents technical challenges and is still unfamiliar to many paediatrics surgeons. This study aims to identify currently available simulators for neonatal/infant MIS training, to assess their validity, level of evidence, and related recommendations. METHODS: The review followed PRISMA guidelines and was registered in PROSPERO (CRD420250581050). Electronic search limited to English articles was performed through PubMed/MEDLINE, SCOPUS, Web of Science and Cochrane Database from January 2010 to June 2024. RESULTS: Out of 1084 identified records, 72 studies met the inclusion criteria and were analysed across general, gastrointestinal, thoracic, and urological MIS specialties. Recent efforts have led to the development of 3D-printed, animal-based, and hybrid models several of which showed high fidelity, skill differentiation, and educational value. Despite promising results, no universal MIS training model exists for neonate/infant patients, highlighting the need for structured, proficiency-based curricula. Overall, studies demonstrated moderate levels of evidence and recommendation, supporting integration of cost-effective simulation into paediatrics MIS training CONCLUSION: This systematic review highlights the need for validated, standardized simulation models and proficiency-based curricula to optimize neonate and infant MIS training and guide future research toward improving model fidelity, accessibility, and long-term educational outcomes.
- MeSH
- Clinical Competence MeSH
- Infant MeSH
- Humans MeSH
- Minimally Invasive Surgical Procedures * education MeSH
- Infant, Newborn MeSH
- Pediatrics * education MeSH
- Simulation Training * methods MeSH
- Check Tag
- Infant MeSH
- Humans MeSH
- Infant, Newborn MeSH
- Publication type
- Journal Article MeSH
- Systematic Review MeSH
The utilization of 3D printing- digital light processing (DLP) technique, for the direct fabrication of microneedles encounters the problem of drug solubility in printing resin, especially if it is predominantly composed of water. The possible solution how to ensure ideal belonging of drug and water-based printing resin is its pre-formulation in nanosuspension such as nanocrystals. This study investigates the feasibility of this approach on a resin containing nanocrystals of imiquimod (IMQ), an active used in (pre)cancerous skin conditions, well known for its problematic solubility and bioavailability. The resin blend of polyethylene glycol diacrylate and N-vinylpyrrolidone, and lithium phenyl-2,4,6-trimethylbenzoylphosphinate as a photoinitiator, was used, mixed with IMQ nanocrystals in water. The final microneedle-patches had 36 cylindrical microneedles arranged in a square grid, measuring approximately 600 μm in height and 500 μm in diameter. They contained 5wt% IMQ, which is equivalent to a commercially available cream. The homogeneity of IMQ distribution in the matrix was higher for nanocrystals compared to usual crystalline form. The release of IMQ from the patches was determined ex vivo in natural skin and revealed a 48% increase in efficacy for nanocrystal formulations compared to the crystalline form of IMQ.
- MeSH
- Printing, Three-Dimensional * MeSH
- Administration, Cutaneous MeSH
- Imiquimod * chemistry administration & dosage MeSH
- Needles * MeSH
- Skin Absorption MeSH
- Skin metabolism MeSH
- Drug Delivery Systems instrumentation MeSH
- Microinjections instrumentation MeSH
- Nanoparticles * chemistry administration & dosage MeSH
- Polyethylene Glycols chemistry administration & dosage MeSH
- Povidone chemistry MeSH
- Solubility * MeSH
- Drug Liberation MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
The collection on Methods and Models in Mammary Gland Biology and Breast Cancer Research showcases recent advances in tools and models that enhance our understanding of mammary gland development and breast cancer. This collection includes sixteen articles, collectively addressing approaches to investigate key aspects of mammary gland biology and tumorigenesis, including hormonal signaling, tissue architecture, tumor microenvironment, and species-specific mammary development. The issue highlights innovations such as optimized progesterone receptor reporters, improved menopause models, and 3D-printed mammary epithelial structures. It also features advancements in organoid-based studies, in situ labeling of epithelial proliferation in large animals, preclinical models for breast cancer prevention, and high-resolution imaging techniques. Methodologies for studying macrophage-cancer cell interactions and lysosomal function are provided as step-by-step protocols. Additionally, review articles provide insights into diverse mammalian organoid systems, rat mammary tumor models, and strategies for modeling breast cancer metastasis. Together, these contributions advance mammary gland research by refining experimental approaches, expanding model diversity, and fostering translational applications in breast cancer.
- MeSH
- Humans MeSH
- Mammary Glands, Human * pathology growth & development physiology MeSH
- Mammary Glands, Animal * pathology growth & development physiology MeSH
- Disease Models, Animal MeSH
- Tumor Microenvironment physiology MeSH
- Breast Neoplasms * pathology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Introductory Journal Article MeSH
- Editorial MeSH
LIM and Src homology 3 (SH3) protein 2 (LASP2) is a small focal adhesion protein first identified as a splice variant of the nebulette gene (Nebl). As the newest member of the nebulin protein family, the regulation and function of LASP2 remain largely unknown. Our previous RNA-sequencing results identified Nebl as one of the most highly induced genes in the mouse liver in response to the activation of pregnane X receptor (PXR). In this study, we investigated this phenomenon further and show that PXR induces Lasp2 instead of Nebl, which partially use the same exons. Lasp2 was found to be induced in response to PXR ligand pregnenolone 16α-carbonitrile (PCN) treatment in mouse liver in vivo both after 4-day treatment and after long-term, 28-day treatment and in both male and female mice. Interestingly, the Lasp2 induction was more efficient in high-fat diet-fed mice (103-fold after 4-day PCN treatment) than in the normal chow-fed mice (32-fold after 4-day PCN treatment). Lasp2 induction was abolished in PXR knockout mice but could be rescued by re-expression of PXR, indicating that Lasp2 induction is PXR mediated. In mouse primary hepatocytes cycloheximide did not inhibit Lasp2 induction by PCN and a PXR binding site could be recognized upstream of the mouse Lasp2 gene suggesting direct regulation of Lasp2 by PXR. In human 3D hepatocytes, rifampicin induced only a modest increase in LASP2 expression. This study shows for the first time that PXR activation strongly induces Lasp2 expression in mouse liver and establishes Lasp2 as a novel PXR target gene. SIGNIFICANCE STATEMENT: RNA-sequencing results have previously identified nebulette (Nebl) to be efficiently induced by pregnane X receptor activating compounds. This study shows that instead of Nebl, LIM and Src homology 3 (SH3) protein 2 (Lasp2) coding for a small focal adhesion protein and partly sharing exons with the Nebl gene is a novel target of pregnane X receptor in mouse liver.
- MeSH
- Adaptor Proteins, Signal Transducing genetics metabolism MeSH
- Cytoskeletal Proteins * genetics metabolism MeSH
- Hepatocytes metabolism drug effects MeSH
- Liver * metabolism drug effects MeSH
- Humans MeSH
- Mice, Inbred C57BL * MeSH
- Mice, Knockout * MeSH
- Mice MeSH
- Pregnane X Receptor * genetics metabolism MeSH
- Pregnenolone Carbonitrile pharmacology MeSH
- LIM Domain Proteins * genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Alterations in tricarboxylic acid (TCA) cycle metabolism are associated with hepatic metabolic disorders. Elevated hepatic acetate concentrations, often attributed to high caloric intake, are recognized as a pivotal factor in the etiology of obesity and metabolic syndrome. Therefore, the assessment of acetate breakdown and TCA cycle activity plays a central role in understanding the impact of diet-induced alterations on liver metabolism. Magnetic resonance-based deuterium metabolic imaging (DMI) could help to unravel the underlying mechanisms involved in disease development and progression, however, the application of conventional deuterated glucose does not lead to substantial enrichment in hepatic glutamine and glutamate. This study aimed to demonstrate the feasibility of DMI for tracking deuterated acetate breakdown via the TCA cycle in lean and diet-induced fatty liver (FL) rats using 3D DMI after an intraperitoneal infusion of sodium acetate-d3 at 9.4T. Localized and nonlocalized liver spectra acquired at 10 time points post-injection over a 130-min study revealed similar intrahepatic acetate uptake in both animal groups (AUCFL = 717.9 ± 131.1 mM▯min-1, AUClean = 605.1 ± 119.9 mM▯min-1, p = 0.62). Metabolic breakdown could be observed in both groups with an emerging glutamine/glutamate (Glx) peak as a downstream metabolic product (AUCFL = 113.6 ± 23.8 mM▯min-1, AUClean = 136.7 ± 41.7 mM▯min-1, p = 0.68). This study showed the viability of DMI for tracking substrate flux through the TCA cycle, underscoring its methodological potential for imaging metabolic processes in the body.
- MeSH
- Acetates metabolism MeSH
- Metabolic Flux Analysis MeSH
- Citric Acid Cycle * MeSH
- Deuterium * MeSH
- Liver * metabolism diagnostic imaging MeSH
- Rats MeSH
- Magnetic Resonance Imaging MeSH
- Rats, Sprague-Dawley MeSH
- Rats, Wistar MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH