Optimal Transport
Dotaz
Zobrazit nápovědu
Thyroid hormones (TH) are essential for vertebrate development, growth, and metabolism. The increasing prevalence of anthropogenic chemicals with TH-disrupting potential highlights the urgent need for advanced methods to assess their impact on TH homeostasis. Inhibition of the sodium-iodide symporter (NIS) has been identified as a key molecular initiating event disrupting the TH system across species, with significant relevance for diagnostic and therapeutic applications in various carcinomas. This study presents in vitro bioassays for evaluating the effects of compounds on iodide uptake into cells, a critical step in TH production mediated by NIS. Two novel stably transfected human cell lines overexpressing human NIS were employed along with a rat thyroid cell model FRTL-5, using colorimetric Sandell-Kolthoff (SK) reaction for iodide detection. The results from 23 model compounds demonstrate comparability across various in vitro models and radioactivity-based assays. To enhance physiological relevance, an external biotransformation system (BTS) was integrated and optimized for live-cell compatibility without inducing cytotoxicity or interfering with the assay. Compounds identified as NIS inhibitors were evaluated using the BTS-augmented assay, which revealed that metabolic activity mitigated the inhibitory effects of some chemicals. The augmented assay exhibited strong concordance with in vivo and in silico biotransformation data. Protein sequence alignment confirmed high conservation of NIS functional domains across vertebrates, reinforcing the cross-species applicability of the findings. The SK-based NIS assay, with optional BTS integration, represents a sensitive, robust, and high-throughput amendable alternative to radioactivity-based methods, for characterizing the impacts of individual compounds and complex environmental mixtures on TH homeostasis.
- MeSH
- biotest metody MeSH
- biotransformace MeSH
- buněčné linie MeSH
- endokrinní disruptory * toxicita MeSH
- hormony štítné žlázy metabolismus MeSH
- jodidy * metabolismus MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- štítná žláza metabolismus účinky léků cytologie MeSH
- symportéry * antagonisté a inhibitory metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Nucleus pulposus cells (NPC) are important for the development of intervertebral disc degeneration (IVDD). miR-4478 can aggravate IVDD, but whether it can aggravate IVDD by regulating ferroptosis in NPC remains unclear. The optimal level of ferroptosis activator RSL3 for eliciting ferroptosis in NPC was screened by Western blot and CCK-8 assay. The targeting relationship between miR-4478 and its potential target solute carrier family 7 member 11 (SLC7A11) was explored based on dual luciferase assay. On this basis, IVDD models were constructed. After over-expression or knockdown of miR-4478 or SLC7A11, CCK-8 and calcein-AM/PI assays were employed to evaluate cell damage. Flow cytometry, Western blot and Prussian blue staining were employed to evaluate oxidation and ferroptosis levels, and histopathological staining was applied to evaluate the intervertebral disc tissue injury degree. The optimal concentration of RSL3 was 1 μM. Under these conditions, miR-4478 or SLC7A11 can be effectively over-expressed or knocked down after transfection. Knockdown of miR-4478 can improve the survival rate of NPC, the level of Fe2+ ions, improve the pathological damage of intervertebral disc structure, reduce iron deposition in tissues, and significantly reduce expression of reactive oxygen species (ROS) and ferroptosis-related protein. The levels of antioxidant enzymes were significantly increased. When miR-4478 was over-expressed, the above phenomenon was reversed. On this basis, after SLC7A11 was over-expressed, the effect of miR-4478 up-regulation was weakened, and NPC ferroptosis was improved. miR-4478 can target SLC7A11 to promote NPC damage, peroxide accumulation and iron metabolism disorders, leading to ferroptosis, thereby inducing IVDD.
- MeSH
- degenerace meziobratlové ploténky * metabolismus genetika patologie MeSH
- ferroptóza * genetika MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- mikro RNA * metabolismus genetika MeSH
- nucleus pulposus * metabolismus patologie cytologie MeSH
- potkani Sprague-Dawley MeSH
- transportní systém aminokyselin y+ * metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
PI3K signaling pathway is crucial for a plethora of cellular processes and is extensively linked with tumorigenesis and chemo-/radioresistance. Although a number of small molecule inhibitors have been synthesized to control PI3K-mediated signaling, only a limited clinical success has been reached. Thus, the search for novel promising candidates is still ongoing. Herein, we present a novel series of N-(5-(2-morpholino-4-oxo-3,4-dihydroquinazolin-8-yl)pyridin-2-yl)acylamides designed to simultaneously inhibit PI3K and DNA-PK activity. Compared to a commercial DNA-PK/PI3K inhibitor AZD7648, synthesized compounds generally exhibited markedly lower baseline cytotoxicity in all tested cell lines (MC38, B16F10, 4T1, CT26 and HEK-239). Through an array of biological experiments, we selected two most promising compounds, 2 and 6. While in cell-free conditions, 6 acted as a very efficient pan-PI3K and DNA-PK inhibitor, in physiological conditions, 2 performed better and acted as a potent chemosensitizer able to increase the amount of DNA double strand breaks induced by doxorubicin. This was plausibly due to its improved ability to accumulate in nuclei as evidenced by confocal analyses. Importantly, using P-gp overexpressing CT26 cells, we found that 2 is an efficient inhibitor of multidrug resistance (MDR) able to down-regulate expression of mRNA encoding MDR-driving proteins ABCB1A, ABCB1B and ABCC1. We also demonstrate that 2 can be simply loaded into lipid nanoparticles that retain its chemosensitizing properties. Taken together, the presented study provides a solid basis for a subsequent rational structure optimization towards new generation of multitarget inhibitors able to control crucial signaling pathways involved in tumorigenesis and drug resistance.
- MeSH
- chemorezistence * účinky léků MeSH
- fosfatidylinositol-3-kinasy metabolismus MeSH
- inhibitory fosfoinositid-3-kinasy * farmakologie MeSH
- inhibitory proteinkinas * farmakologie chemie chemická syntéza MeSH
- lidé MeSH
- mnohočetná léková rezistence * účinky léků MeSH
- molekulární struktura MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- P-glykoprotein * antagonisté a inhibitory metabolismus MeSH
- proliferace buněk účinky léků MeSH
- proteinkinasa aktivovaná DNA * antagonisté a inhibitory metabolismus MeSH
- protinádorové látky * farmakologie chemie chemická syntéza MeSH
- screeningové testy protinádorových léčiv MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The increased accessibility of extracorporeal membrane oxygenation following the COVID-19 pandemic and the publication of the first randomized trial of extracorporeal cardiopulmonary resuscitation (ECPR) prompted the National Heart, Lung, and Blood Institute to sponsor a workshop on ECPR. Two more randomized trials have since been published in 2022 and 2023. Based on the combined findings and review of the evidence, an international panel of authors identified gaps in science, inequities in care and diversity in outcomes, and suggested research opportunities and next steps. The science pertaining to ECPR would benefit from the United States contributing uniform data to existing registries and sharing common data with the ELSO (Extracorporeal Life Support Organization) international registry to increase the sample size for observational research. In addition, well-designed efficacy trials, recruiting across different regions of care evaluating long-term follow-up, including patient reported outcomes, cost effectiveness, and equity measures, would contribute significantly to the body of science. Workshop participants defined the population of patients with out-of-hospital cardiac arrest most likely to benefit from ECPR. ECPR-eligible patients include those aged 18 to 75 years functioning independently without comorbidity; before suffering a witnessed out-of-hospital cardiac arrest and without any obvious cause of the cardiac arrest; presenting in a shockable rhythm and transported with mechanical cardiopulmonary resuscitation to an ECPR-capable institute within 30 minutes, which is recommended after 3 rounds of advanced life support treatment without return of spontaneous circulation. There are significant inequities in out-of-hospital cardiac arrest care that need to be addressed such that outcomes are optimized for each target region before implementing ECPR in a clinical or implementation trial.
- MeSH
- COVID-19 epidemiologie terapie MeSH
- kardiopulmonální resuscitace * metody MeSH
- konsensus MeSH
- lidé MeSH
- mezery v důkazech MeSH
- mimotělní membránová oxygenace * metody MeSH
- National Heart, Lung, and Blood Institute (U.S.) * MeSH
- SARS-CoV-2 MeSH
- zástava srdce mimo nemocnici * terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Geografické názvy
- Spojené státy americké MeSH
Chronic Kidney Disease (CKD) is associated with heightened risk of thrombosis. Prescription of anticoagulants is key to manage it; however, CKD patients have shown an increased risk of bleeding under anticoagulation therapy compared to non-CKD patients. We hypothesized that the sex could modify the metabolism of indoxyl sulfate (IS), a uremic toxin and Apixaban. Our intoxication model shows that higher doses of IS and apixaban accumulate in the plasma of female mice because of expression differences in efflux transporters and cytochromes in the liver, ileum and kidneys, when compared to males. Furthermore, we found that accumulation of apixaban in females contributes to increased bleeding. Transcriptional analysis of liver samples revealed elevated Sult1a1 but reduced Abcg2 and Cyp3a11 in female mice, while in the kidneys the expression rates of Oat1 and Oat3 were respectively lower and higher than those observed in males, potentially affecting drug clearance. Whole proteomics liver analysis confirmed the previous transcriptional results at the protein level and revealed that sex had a major influence in regulating both coagulation and drug metabolism pathways. Thus, our findings underline the need for inclusive clinical and preclinical trials to accurately reflect sex-specific metabolic variations, and to consider CKD-specific changes to optimize dosing, minimize side effects, and improve patient outcomes.
- MeSH
- ABC transportér z rodiny G, člen 2 metabolismus genetika MeSH
- antikoagulancia aplikace a dávkování metabolismus MeSH
- chronická renální insuficience metabolismus farmakoterapie MeSH
- cytochrom P-450 CYP3A metabolismus genetika MeSH
- indican * metabolismus krev MeSH
- játra * metabolismus účinky léků MeSH
- krvácení metabolismus MeSH
- ledviny metabolismus účinky léků MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- přenašeče organických aniontů nezávislé na sodíku metabolismus genetika MeSH
- protein 1 přenášející organické anionty metabolismus genetika MeSH
- pyrazoly * farmakologie MeSH
- pyridony * aplikace a dávkování metabolismus farmakologie MeSH
- sexuální faktory MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Hypoxic pulmonary vasoconstriction (HPV) rapidly and reversibly matches lung ventilation (V) and perfusion (Q), optimizing oxygen uptake and systemic oxygen delivery. HPV occurs in small pulmonary arteries (PA), which uniquely constrict to hypoxia. Although HPV is modulated by the endothelium the core mechanism of HPV resides in PA smooth muscle cells (PASMC). The PASMC's mitochondrial oxygen sensor lies within the electron transport chain (ETC) and includes NDUFS2 in ETC Complex-I. PASMC mitochondria respond to hypoxia by varying production of reactive oxygen species (ROS) and hydrogen peroxide in proportion to alveolar oxygen tension. Hypoxic ROS inhibition results in a state of reduction which triggers a redox-mediated inhibition of oxygen-sensitive, voltage-gated, potassium channels, including Kv1.5 and Kv2.1. Kv channel inhibition depolarizes the PASMC, opening of large-conductance calcium channels (CaL), elevating cytosolic calcium and activating the contractile apparatus. HPV is strongest in small PAs where sensors (hypoxia-responsive mitochondria) and effectors (oxygen-sensitive K+ channels) are enriched. Oxygenation at birth reverses fetal HPV, contributing to the rapid neonatal drop in pulmonary vascular resistance (PVR). A similar mitochon-drial-K+ channel sensor-effector mechanism exists in the ductus arteriosus (DA), however in DASMC it is oxygen-induced increases in mitochondrial ROS that inhibit DASMC K+ channels, causing DA constriction. Atelectasis and pneumonia elicit HPV, which optimises V/Q matching, increasing systemic oxygenation. Whilst HPV in response to localized hypoxia in a single lung lobe does not increase PA pressure; global airway hypoxia, as occurs with altitude or sleep apnea, causes pulmonary hypertension. HPV can be inhibited by drugs, including calcium channel blockers, or used to maintain a dry operative field during single lung anesthesia for lung surgery. HPV does not normally cause lung edema but excessive, heterogenous HPV contributes to high altitude pulmonary edema. HPV is suppressed in COVID-19 pneumonia by a SARS-CoV-2 mitochondriopathy. HPV is a component of the body's homeostatic oxygen sensing system. Keywords: Ductus arteriosus, Redox, NDUFS2, Oxygen sensitive potassium, Channels, High altitude pulmonary edema (HAPE), Mitochondrial electron transport chain, COVID-19 pneumonia, Atelectasis.
- MeSH
- arteria pulmonalis metabolismus MeSH
- COVID-19 metabolismus komplikace MeSH
- homeostáza * fyziologie MeSH
- hypoxie * metabolismus patofyziologie MeSH
- kyslík * metabolismus MeSH
- lidé MeSH
- vazokonstrikce * fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Tunnels in enzymes with buried active sites are key structural features allowing the entry of substrates and the release of products, thus contributing to the catalytic efficiency. Targeting the bottlenecks of protein tunnels is also a powerful protein engineering strategy. However, the identification of functional tunnels in multiple protein structures is a non-trivial task that can only be addressed computationally. We present a pipeline integrating automated structural analysis with an in-house machine-learning predictor for the annotation of protein pockets, followed by the calculation of the energetics of ligand transport via biochemically relevant tunnels. A thorough validation using eight distinct molecular systems revealed that CaverDock analysis of ligand un/binding is on par with time-consuming molecular dynamics simulations, but much faster. The optimized and validated pipeline was applied to annotate more than 17,000 cognate enzyme-ligand complexes. Analysis of ligand un/binding energetics indicates that the top priority tunnel has the most favourable energies in 75% of cases. Moreover, energy profiles of cognate ligands revealed that a simple geometry analysis can correctly identify tunnel bottlenecks only in 50% of cases. Our study provides essential information for the interpretation of results from tunnel calculation and energy profiling in mechanistic enzymology and protein engineering. We formulated several simple rules allowing identification of biochemically relevant tunnels based on the binding pockets, tunnel geometry, and ligand transport energy profiles.Scientific contributionsThe pipeline introduced in this work allows for the detailed analysis of a large set of protein-ligand complexes, focusing on transport pathways. We are introducing a novel predictor for determining the relevance of binding pockets for tunnel calculation. For the first time in the field, we present a high-throughput energetic analysis of ligand binding and unbinding, showing that approximate methods for these simulations can identify additional mutagenesis hotspots in enzymes compared to purely geometrical methods. The predictor is included in the supplementary material and can also be accessed at https://github.com/Faranehhad/Large-Scale-Pocket-Tunnel-Annotation.git . The tunnel data calculated in this study has been made publicly available as part of the ChannelsDB 2.0 database, accessible at https://channelsdb2.biodata.ceitec.cz/ .
- Publikační typ
- časopisecké články MeSH
INTRODUCTION: The ongoing conflict in Ukraine from Russian invasion presents a critical challenge to medical planning in the context of multi-domain battle against a peer adversary deploying conventional weapon systems. The potential escalation of preventable morbidity and mortality, reaching a scale unprecedented since World War II, underscores the paramount importance of effective phases of care from Point of Injury (PoI)/Point of Wounding (PoW) or Point of Exposure (PoE) to Role 1 (R1) and Role 2 (R2) echelons of care.The NATO Vigorous Warrior (VW) Live Exercise (LIVEX) serves as a strategic platform for NATO and its partners, providing an opportunity to challenge operational concepts, experiment, innovate life-saving systems, and foster best practices across the Alliance. MATERIALS AND METHODS: This study delineates the strategic application of the VW LIVEX platform for the adaptation of the computational simulation software Simulation for the Assessment and Optimization of Medical Disaster Management (SIMEDIS) within the context of Large-Scale Combat Operations (LSCO). The SIMEDIS computer simulator plays a pivotal role by furnishing real-time insights into the evolving injury patterns of patients, employing an all-hazards approach. This simulator facilitates the examination of temporal shifts in medical timelines and the ramifications of resource scarcity against both morbidity and mortality outcomes. The VW LIVEX provides a unique opportunity for systematic validation to evaluate the results of the computer simulator in a realistic setting and identify gaps for future concepts of operations. RESULTS: We report the process and methodologies to be evaluated at the VW LIVEX in far forward and retrospective medical support operations. Using the SIMEDIS simulator, we can define battlefield scenarios for varied situations including artillery, drone strikes, and Chemical, Biological, Radiological, Nuclear, and explosive (CBRNe) attacks. Casualty health progressions versus time are dependent on each threat. Mortality is computed based on the concepts found in Tactical Combat Casualty Care (TCCC) of "self-aid"/"buddy-aid" factoring in the application or absence of definitive traumatic hemorrhage control and on the distribution policy of victims to medical treatment facilities through appropriate Command and Control (C2) ("Scoop and Run" versus "Stay and Play"). The number of medical supplies available along with the number of transport resources and personnel are set and are scalable, with their effect on both morbidity and mortality quantified.Concept of Medical Operations can be optimized and interoperability enhanced when shared data are provided to C2 for prospective medical planning with retrospective data. The SIMEDIS simulator determines best practices of medical management for a myriad of injury types and tactical/operational situations relevant to policy making and battlefield medical planning for LSCO. CONCLUSIONS: The VW LIVEX provides a Concept Development and Experimentation platform for SIMEDIS refinement and conclusive insights into medical planning to reduce preventable morbidity and mortality. Recommending further iterations of similar methodologies at other NATO LIVEXs for validation is crucial, as is information sharing across the Alliance and partners to ensure best practice standards are met.
- MeSH
- lidé MeSH
- počítačová simulace * trendy normy statistika a číselné údaje MeSH
- vedení války statistika a číselné údaje MeSH
- vojenské lékařství metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Ukrajina MeSH
Nová doporučení KDIGO pro léčbu chronického onemocnění ledvin se zabývají širokou škálou klíčových témat, včetně optimálního hodnocení a klasifikace chronického onemocnění ledvin (CKD), hodnocení rizika onemocnění ledvin, léčby komplikací a farmakoterapie. Důraz, který je kladen na multidisciplinární týmovou práci, zapojení pacientů a holistický přístup k péči založený na důkazech, by měl přispět k lepší koordinaci pacientů s CKD. Nefrologové by si měli více všímat dalších interních komorbidit a spolupracovat na jejich léčbě.
The new KDIGO recommendations for the management of chronic kidney disease address a wide range of key topics, including optimal assessment and classification of chronic kidney disease (CKD), risk assessment of kidney disease, management of complications, and pharmacotherapy. The emphasis placed on multidisciplinary teamwork, patient involvement, and a holistic, evidence-based approach to care should contribute to better coordination for patients with CKD. Nephrologists should be more aware of other internal comorbidities and collaborate on their treatment.
- Klíčová slova
- KDIGO,
- MeSH
- časná diagnóza MeSH
- chronická nemoc * prevence a kontrola MeSH
- činnosti denního života MeSH
- glifloziny terapeutické užití MeSH
- hodnoty glomerulární filtrace účinky léků MeSH
- komorbidita MeSH
- lidé MeSH
- management nemoci MeSH
- nemoci ledvin * diagnóza dietoterapie etiologie farmakoterapie MeSH
- progrese nemoci MeSH
- receptor pro glukagonu podobný peptid 1 antagonisté a inhibitory MeSH
- týmová péče o pacienty MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
- směrnice pro lékařskou praxi MeSH
The oviduct provides an optimal environment for the final preparation, transport, and survival of gametes, the fertilization process, and early embryonic development. Most of the studies on reproduction are based on in vitro cell culture models because of the cell's accessibility. It creates opportunities to explore the complexity of directly linked processes between cells. Previous studies showed a significant expression of genes responsible for cell differentiation, maturation, and development during long-term porcine oviduct epithelial cells (POECs) in vitro culture. This study aimed at establishing the transcriptomic profile and comprehensive characteristics of porcine oviduct epithelial cell in vitro cultures, to compare changes in gene expression over time and deliver information about the expression pattern of genes highlighted in specific GO groups. The oviduct cells were collected after 7, 15, and 30 days of in vitro cultivation. The transcriptomic profile of gene expression was compared to the control group (cells collected after the first day). The expression of COL1A2 and LOX was enhanced, while FGFBP1, SERPINB2, and OVGP1 were downregulated at all selected intervals of cell culture in comparison to the 24-h control (p-value < 0.05). Adding new detailed information to the reproductive biology field about the diversified transcriptome profile in POECs may create new future possibilities in infertility treatments, including assisted reproductive technique (ART) programmes, and may be a valuable tool to investigate the potential role of oviduct cells in post-ovulation events.
- MeSH
- buněčné kultury metody MeSH
- epitelové buňky * metabolismus cytologie MeSH
- kultivované buňky MeSH
- prasata MeSH
- regulace genové exprese MeSH
- stanovení celkové genové exprese MeSH
- transkriptom * MeSH
- vejcovody u zvířat metabolismus cytologie MeSH
- vejcovody metabolismus cytologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH