Patterned surfaces
Dotaz
Zobrazit nápovědu
INTRODUCTION: Currently, limited data are available on long-term use of dupilumab to treat atopic dermatitis (AD) in a multinational real-world setting. The aim of this analysis was to report the interim 1-year data for patients with AD enrolled in the GLOBOSTAD registry, including treatment patterns, dupilumab effectiveness and safety, and healthcare burden. METHODS: GLOBOSTAD is an ongoing, 5-year, multinational, prospective, observational study of adult/adolescent (aged ≥ 12 years at baseline) patients with AD who initiated dupilumab in real-world settings according to their local country-specific prescribing guidelines. Outcomes were evaluated at baseline and at 3, 6 and 12 months and included Eczema Area and Severity Index (EASI) total score, SCORing Atopic Dermatitis (SCORAD) total score, percent body surface area (BSA) affected, Patient-Oriented Eczema Measure (POEM), Dermatology Life Quality Index (DLQI) total score for adults or Children's Dermatology Life Quality Index (CDLQI) total score for adolescents and pruritus Numeric Rating Scale (NRS) total score. RESULTS: At the interim 1-year cut-off (March 2023), 955 patients were enrolled in GLOBOSTAD, and follow-up data were obtained from 903 patients. After dupilumab initiation, mean improvements in effectiveness outcome measures from baseline to month 3 were EASI from 25.1 to 6.1, SCORAD 59.3 to 25.3, POEM 19.7 to 8.7, DLQI 13.7 to 5.3, CDLQI 12.2 to 2.7 and pruritus NRS 6.3 to 2.5, with each measure exceeding the minimal clinically important difference. These positive changes in effectiveness outcomes were maintained or further improved through 12 months since treatment initiation. AD-related hospitalizations and emergency room or urgent care facility visits decreased from 11.1% to 1.7% from baseline to month 12. CONCLUSIONS: In a multinational real-world setting, dupilumab demonstrated rapid, robust and sustained effectiveness in patients with moderate-to-severe AD across multiple disease domains, including AD signs, symptoms, quality of life and emergency/urgent care visits. Safety was consistent with the known dupilumab safety profile. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov Identifier NCT03992417.
- MeSH
- atopická dermatitida * farmakoterapie MeSH
- dítě MeSH
- dospělí MeSH
- humanizované monoklonální protilátky * terapeutické užití MeSH
- kvalita života * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- prospektivní studie MeSH
- registrace MeSH
- stupeň závažnosti nemoci * MeSH
- výsledek terapie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- pozorovací studie MeSH
PURPOSE: MRI-only adaptive brachytherapy (MRI-ABT) is the state-of-the-art for treating locally advanced cervical cancer (LACC) in combination with concurrent chemoradiotherapy. We aimed to evaluate the pattern of pelvic recurrence after the treatment. MATERIAL AND METHODS: A total of one hundred LACC patients were treated between January 2017 and December 2023 with concurrent chemoradiotherapy of 45 Gy in 25 fractions ± boost to lymphadenopathy (up to a maximum dose of 60 Gy in 25 fractions) with concurrent weekly cisplatin chemotherapy at the dose of 40 mg/m2/week, and MR-ABT. RESULTS: At a median follow-up of 30.2 months, there were 2 local recurrences (2%) and 9 regional pelvic recurrences (9%). The median time to local/regional recurrence was 11 months (range 6-21). For all stages, the 3-year local control was 97.66%, and the 3-year pelvic control was 89.45%. Twenty-four patients died during follow-up; the 3-year overall survival was 75.11%, and the 3-year disease-free survival was 70.97%. CONCLUSION: MRI-ABT combined with external beam radiotherapy and concurrent chemotherapy for LACC demonstrates excellent local and regional pelvic control. Most local/regional recurrences occur inside or at the edge of the external-beam irradiated field. Recurrences inside the field of brachytherapy are rare. Distant recurrences are the predominant cause of death in LACC patients treated with definitive CRT and MRI-ABT.
- MeSH
- brachyterapie * metody MeSH
- chemoradioterapie * MeSH
- cisplatina terapeutické užití MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- lokální recidiva nádoru * radioterapie MeSH
- magnetická rezonanční tomografie * MeSH
- nádory děložního čípku * radioterapie diagnostické zobrazování patologie MeSH
- retrospektivní studie MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
AIMS: Sinonasal adenosquamous carcinoma (ASC) is a rare tumour classified as a variant of squamous cell carcinoma, exhibiting both squamous and glandular differentiation. ASC has a poorer prognosis compared to sinonasal mucoepidermoid carcinoma (MEC), another uncommon tumour in this region. ASC is believed to originate from metaplastic squamous epithelium, though it may also arise from respiratory epithelium in respiratory epithelial adenomatoid hamartoma (REAH) or seromucinous glands in seromucinous hamartoma (SH). METHODS AND RESULTS: Five cases of sinonasal ASC were retrieved from our registry. Initially, they were classified as sinonasal MEC (n = 3), ASC (n = 2), and carcinoma ex REAH (n = 1). All cases showed adenosquamous malignant proliferation beneath the surface respiratory epithelium with occasional squamous metaplasia, except for one case that showed dysplasia. The respiratory epithelium exhibited an inverted growth pattern consistent with REAH/SH, and displayed atypical sinonasal glands (ASGSH) arising within seromucinous hamartoma. Next-generation sequencing (NGS) revealed multiple pathogenic mutations in two cases, and in case 4 GGA2::PRKCB and EYA2::SERINC3 gene fusions. One case was positive for high-risk HPV. None of the cases exhibited CRTC1/3::MAML2 gene fusion. CONCLUSION: The connection between ASGSH and ASC has not been described in the literature. There is a growing need for additional studies on the morphological, immunohistochemical, and genetic aspects of these tumours. SH/REAH may serve as precursor lesions in the progression of atypical sinonasal glands to malignancy, and their role in tumour development deserves further investigation.
- MeSH
- adenoskvamózní karcinom * patologie genetika MeSH
- dospělí MeSH
- hamartom * patologie genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory vedlejších dutin nosních patologie genetika MeSH
- respirační sliznice patologie MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Glioblastomas are aggressive brain tumors for which effective therapy is still lacking, resulting in dismal survival rates. These tumors display significant phenotypic plasticity, harboring diverse cell populations ranging from tumor core cells to dispersed, highly invasive cells. Neuron navigator 3 (NAV3), a microtubule-associated protein affecting microtubule growth and dynamics, is downregulated in various cancers, including glioblastoma, and has thus been considered a tumor suppressor. In this study, we challenge this designation and unveil distinct expression patterns of NAV3 across different invasion phenotypes. Using glioblastoma cell lines and patient-derived glioma stem-like cell cultures, we disclose an upregulation of NAV3 in invading glioblastoma cells, contrasting with its lower expression in cells residing in tumor spheroid cores. Furthermore, we establish an association between low and high NAV3 expression and the amoeboid and mesenchymal invasive phenotype, respectively, and demonstrate that overexpression of NAV3 directly stimulates glioblastoma invasive behavior in both 2D and 3D environments. Consistently, we observed increased NAV3 expression in cells migrating along blood vessels in mouse xenografts. Overall, our results shed light on the role of NAV3 in glioblastoma invasion, providing insights into this lethal aspect of glioblastoma behavior.
- MeSH
- fenotyp * MeSH
- glioblastom * patologie genetika metabolismus MeSH
- invazivní růst nádoru * genetika MeSH
- lidé MeSH
- membránové proteiny MeSH
- mikrotubuly metabolismus MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- nádory mozku * patologie genetika metabolismus MeSH
- pohyb buněk genetika fyziologie MeSH
- proteiny nervové tkáně metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Perflorochemicals (PFCs), among which are the most commonly detected perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA), are persistent emergent contaminants of concern in recent times. These compounds have been reported for their cytotoxicity, genotoxicity, carcinogenicity, immunotoxicity, and developmental toxicities. Meanwhile, they have been detected in diverse matrices such as soil, sediment, and, surprisingly, in serum and even breastmilk. Worrisomely, these compounds are detected in drinking water across the globe, aquaculture water, and other surface waters. Thus, it was important to appraise the studies conducted on PFOS and PFOA to provide an overview of the environmental status of contamination regarding them. The present review article sought to provide insights into the occurrence patterns and ecotoxic effects of both pollutants in the water ecosystems within five continents of the world. Based on the information gathered in this article, the ∑PFOS concentration (ng/L) within the five continents is in the order Europe > Asia > Africa > North America > South America, while the ∑PFOA level (ng/L) is in the order Europe > Asia > South America > Africa > North America. The study also investigated the previous works that have been conducted regarding the diverse elimination technologies employed for the removal of these pollutants from the aqueous environments, with plasma combined with surfactant process being the most efficient. Generally, studies on PFOS/PFOA are still scanty when compared to those on pharmaceuticals and personal care products (PPCPs), especially in North America. The information gathered in this study could be useful in establishing thresholds of PFOA and PFOS environmental levels and be adopted by appropriate authorities as safety guidelines.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The RNA chaperone Hfq plays crucial roles in bacterial gene expression and is a major facilitator of small regulatory RNA (sRNA) action. The toroidal architecture of the Hfq hexamer presents three well-characterized surfaces that allow it to bind sRNAs to stabilize them and engage target transcripts. Hfq-interacting sRNAs are categorized into two classes based on the surfaces they use to bind Hfq. By characterizing a systematic alanine mutant library of Hfq to identify amino acid residues that impact survival of Escherichia coli experiencing nitrogen (N) starvation, we corroborated the important role of the three RNA-binding surfaces for Hfq function. We uncovered two, previously uncharacterized, conserved residues, V22 and G34, in the hydrophobic core of Hfq, to have a profound impact on Hfq's RNA-binding activity in vivo. Transcriptome-scale analysis revealed that V22A and G34A Hfq mutants cause widespread destabilization of both sRNA classes, to the same extent as seen in bacteria devoid of Hfq. However, the alanine substitutions at these residues resulted in only modest alteration in stability and structure of Hfq. We propose that V22 and G34 have impact on Hfq function, especially critical under cellular conditions when there is an increased demand for Hfq, such as N starvation.
- MeSH
- bakteriální RNA * metabolismus genetika chemie MeSH
- dusík metabolismus MeSH
- Escherichia coli * genetika metabolismus MeSH
- hydrofobní a hydrofilní interakce * MeSH
- konzervovaná sekvence MeSH
- malá nekódující RNA * metabolismus genetika chemie MeSH
- mutace MeSH
- protein hostitelského faktoru 1 * metabolismus genetika chemie MeSH
- proteiny z Escherichia coli * metabolismus genetika chemie MeSH
- regulace genové exprese u bakterií MeSH
- stabilita RNA * genetika MeSH
- stanovení celkové genové exprese MeSH
- transkriptom genetika MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
Most tooth-bearing non-mammalian vertebrates have the capacity to replace their teeth throughout life. This capacity was lost in mammals, which replace their teeth only once at most. Not surprisingly, continuous tooth replacement has attracted much attention. Classical morphological studies (e.g. to analyse patterns of replacement) are now being complemented by molecular studies that investigate the expression of genes involved in tooth formation. This review focuses on ray-finned fish (actinopterygians), which have teeth often distributed throughout the mouth and pharynx, and more specifically on teleost fish, the largest group of extant vertebrates. First we highlight the diversity in tooth distribution and in tooth replacement patterns. Replacement tooth formation can start from a distinct (usually discontinuous and transient) dental lamina, but also in the absence of a successional lamina, e.g. from the surface epithelium of the oropharynx or from the outer dental epithelium of a predecessor tooth. The relationship of a replacement tooth to its predecessor is closely related to whether replacement is the result of a prepattern or occurs on demand. As replacement teeth do not necessarily have the same molecular signature as first-generation teeth, the question of the actual trigger for tooth replacement is discussed. Much emphasis has been laid in the past on the potential role of epithelial stem cells in initiating tooth replacement. The outcome of such studies has been equivocal, possibly related to the taxa investigated, and the permanent or transient nature of the dental lamina. Alternatively, replacement may result from local proliferation of undifferentiated progenitors, stimulated by hitherto unknown, perhaps mesenchymal, factors. So far, the role of the neurovascular link in continuous tooth replacement has been poorly investigated, despite the presence of a rich vascularisation surrounding actinopterygian (as well as chondrichthyan) teeth and despite a complete arrest of tooth replacement after nerve resection. Lastly, tooth replacement is possibly co-opted as a process to expand the number of teeth in a dentition ontogenetically whilst conserving features of the primary dentition. That neither a dental lamina, nor stem cells appear to be required for tooth replacement places teleosts in an advantageous position as models for tooth regeneration in humans, where the dental lamina regresses and epithelial stem cells are considered lost.
- MeSH
- biologická evoluce MeSH
- ryby * fyziologie MeSH
- zuby * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
This study investigates the interaction of two approved and one newly developed latanoprost formulation with in vitro and in silico models of the tear film and tear film lipid layer (TFLL). Latanoprost, a prostaglandin analogue used for intraocular elevated pressure treatment, is topically delivered by nanocarriers within aqueous solutions or emulsions. The study focuses on the impact of these carriers on drug interactions with the tear film and their effect on the TFLL. Three different types of latanoprost carriers, micellar, nanoemulsion, and polymer-based, were compared, and each revealed distinct interaction patterns with the TFLL. Surface pressure kinetics demonstrated a rapid increase for the benzalkonium chloride formulation and a slow rise for the preservative-free variants. Visualization of the acellular in vitro TFLL model revealed different patterns of incorporation for each formulation, indicating unique interaction mechanisms. Molecular dynamics simulations further revealed different mechanisms of drug release in the TFLL between micellar and nanoemulsion formulations. In-depth examination highlighted the role of triglyceride molecules in replenishing the nonpolar layer of the TFLL, which suggests potential improvements in ocular surface compatibility by adjusting the quality and concentration of the oily phase. These findings suggest the potential for optimizing latanoprost formulations by tuning the oily phase-to-surfactant ratio and selecting suitable surfactants.
- MeSH
- antihypertenziva terapeutické užití MeSH
- glaukom * farmakoterapie MeSH
- latanoprost terapeutické užití MeSH
- lékové transportní systémy MeSH
- lidé MeSH
- nitrooční tlak MeSH
- oči * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The ventricular trabeculae play a role, among others, in the impulse spreading in ectothermic hearts. Despite the morphological similarity with the early developing hearts of endotherms, this trabecular function in mammalian and avian embryos was poorly addressed. RESULTS: We simulated impulse propagation inside the looping ventricle and revealed delayed apical activation in the heart with inhibited trabecular growth. This finding was corroborated by direct imaging of the endocardial surface showing early activation within the trabeculae implying preferential spreading of depolarization along with them. Targeting two crucial pathways of trabecular formation (Neuregulin/ErbB and Nkx2.5), we showed that trabecular development is also essential for proper conduction patterning. Persistence of the slow isotropic conduction likely contributed to the pumping failure in the trabeculae-deficient hearts. CONCLUSIONS: Our results showed the essential role of trabeculae in intraventricular impulse spreading and conduction patterning in the early endothermic heart. Lack of trabeculae leads to the failure of conduction parameters differentiation resulting in primitive ventricular activation with consequent impact on the cardiac pumping function.
- MeSH
- neureguliny MeSH
- savci MeSH
- srdce * MeSH
- srdeční komory * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
This study develops and characterizes novel biodegradable soft hydrogels with dual porosity based on N-(2-hydroxypropyl)methacrylamide (HPMA) copolymers cross-linked by hydrolytically degradable linkers. The structure and properties of the hydrogels are designed as scaffolds for tissue engineering and they are tested in vitro with model mesenchymal stem cells (rMSCs). Detailed morphological characterization confirms dual porosity suitable for cell growth and nutrient transport. The dual porosity of hydrogels slightly improves rMSCs proliferation compared to the hydrogel with uniform pores. In addition, the laminin coating supports the adhesion of rMSCs to the hydrogel surface. However, hydrogels modified by heptapeptide RGDSGGY significantly stimulate cell adhesion and growth. Moreover, the RGDS-modified hydrogels also affect the topology of proliferating rMSCs, ranging from single-cell to multicellular clusters. The 3D reconstruction of the hydrogels with cells obtained by laser scanning confocal microscopy (LSCM) confirms cell penetration into the inner structure of the hydrogel and its corresponding microstructure. The prepared biodegradable oligopeptide-modified hydrogels with dual porosity are suitable candidates for further in vivo evaluation in soft tissue regeneration.