activity screening
Dotaz
Zobrazit nápovědu
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) autocatalytically releases itself out of the viral polyprotein to form a fully active mature dimer in a manner that is not fully understood. Here, we introduce several tools to help elucidate differences between cis (intramolecular) and trans (intermolecular) proteolytic processing and to evaluate inhibition of precursor Mpro. We found that many mutations at the P1 position of the N-terminal autoprocessing site do not block cis autoprocessing but do inhibit trans processing. Notably, substituting the WT glutamine at the P1 position with isoleucine retains Mpro in an unprocessed precursor form that can be purified and further studied. We also developed a cell-based reporter assay suitable for compound library screening and evaluation in HEK293T cells. This assay can detect both overall Mpro inhibition and the fraction of uncleaved precursor form of Mpro through separable fluorescent signals. We observed that inhibitory compounds preferentially block mature Mpro. Bofutrelvir and a novel compound designed in-house showed the lowest selectivity between precursor and mature Mpro, indicating that inhibition of both forms may be possible. Additionally, we observed positive modulation of precursor activity at low concentrations of inhibitors. Our findings help expand understanding of the SARS-CoV-2 viral life cycle and may facilitate development of strategies to target precursor form of Mpro for inhibition or premature activation of Mpro.
- MeSH
- antivirové látky * farmakologie chemie MeSH
- farmakoterapie COVID-19 MeSH
- HEK293 buňky MeSH
- inhibitory proteas farmakologie chemie MeSH
- koronavirové proteasy 3C * metabolismus antagonisté a inhibitory chemie genetika MeSH
- lidé MeSH
- mutace MeSH
- objevování léků * metody MeSH
- proteolýza MeSH
- SARS-CoV-2 * enzymologie účinky léků metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Limited licensed medications are available for multiple sclerosis (MS) in pediatric patients. OBJECTIVE: To evaluate the efficacy, safety, and tolerability of alemtuzumab in pediatric patients with relapsing-remitting multiple sclerosis (RRMS) and disease activity on prior disease-modifying therapies (DMTs). METHODS: LemKids was a multicenter, multinational, single-arm, open-label, switch (from ongoing DMT to alemtuzumab treatment) study in pediatric RRMS patients (aged 10-<18 years), with disease activity on DMT. The primary endpoint was a comparison of the number of new/enlarging T2 lesions on the magnetic resonance imaging of the brain between the prior-DMT period and alemtuzumab treatment. RESULTS: This study was prematurely terminated due to low enrollment and an European Medicines Agency Article-20 pharmacovigilance review of alemtuzumab in adult RRMS. Of 46 screened patients, 16 were enrolled; 12 completed prior-DMT treatment period; 11 received alemtuzumab of whom 7 completed treatment. Patients on alemtuzumab developed fewer new/enlarging T2 lesions compared with prior-DMT (7 vs 178, relative risk (95% confidence interval): 0.04 (0.01-0.14)). No significant pharmacodynamic changes or safety concerns were noted in this limited dataset. CONCLUSION: Alemtuzumab treatment was associated with a low number of new/enlarging T2 lesions in pediatric patients with RRMS and was safe and well tolerated in seven patients during infusion and the initial 4 months.
- MeSH
- alemtuzumab * škodlivé účinky MeSH
- dítě MeSH
- imunologické faktory * škodlivé účinky aplikace a dávkování MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mladiství MeSH
- relabující-remitující roztroušená skleróza * farmakoterapie diagnostické zobrazování MeSH
- výsledek terapie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
In screening biocontrol strains with broad-spectrum and high-efficiency herbicidal activities, a strain with strong pathogenicity, HY-021, was isolated from the leaves of Rumex acetosa, which was identified as Botrytis fabiopsis based on morphology and molecular biology. The herbicidal activities of the fermentation filtrate of strain HY-021 against nine weeds, including Chenopodium album L., Elsholtzia densa Benth., Malva verticillata L. var. Crispa, Polygonum lapathifolium L., Amaranthus retroflexus L., Avena fatua L., Thlaspi arvense L., Polygonum aviculare L., and Galium spurium L., were determined in vitro and in vivo. The results showed that the pathogenicity of strain HY-021 to the different weeds in vitro was as follows: E. densa > A. retroflexus > P. aviculare > P. lapathifolium > M. verticillata > T. arvense > G. spurium > A. fatua > C. album. Seven days after inoculation with the HY-021 strain, the incidences in nine weeds were in the range of 32.9-87.23%, and the disease index values of the nine weeds were 41.73-94.57%. The pathogenic effects from high to low were A. retroflexus > E. densa > A. fatua > G. spurium > C. album > M. verticillata > T. arvense > P. aviculare > P. lapathifolium. The crop safety test showed that the biocontrol strain HY-021 was safe to V. faba, P. sativum, H. vulgare, and T. aestivum, but had a slight effect on B. napus. Scanning electron microscopy showed that the mycelium of strain HY-021 invaded the tissue through the stomata of C. album leaves, parasitized and reproduced in the tissue, and gradually destroyed the tissue. The results of this study provide a basis for the development and utilization of new and efficient microbial source herbicides.
- MeSH
- biologická kontrola škůdců * metody MeSH
- biologická ochrana * MeSH
- Botrytis * izolace a purifikace fyziologie genetika patogenita MeSH
- herbicidy metabolismus farmakologie MeSH
- kontrola plevele * metody MeSH
- listy rostlin mikrobiologie MeSH
- nemoci rostlin * mikrobiologie prevence a kontrola MeSH
- plevel * mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Čína MeSH
Cyanobacteria are prokaryotic organisms characterised by their complex structures and a wide range of pigments. With their ability to fix CO2, cyanobacteria are interesting for white biotechnology as cell factories to produce various high-value metabolites such as polyhydroxyalkanoates, pigments, or proteins. White biotechnology is the industrial production and processing of chemicals, materials, and energy using microorganisms. It is known that exposing cyanobacteria to low levels of stressors can induce the production of secondary metabolites. Understanding of this phenomenon, known as hormesis, can involve the strategic application of controlled stressors to enhance the production of specific metabolites. Consequently, precise measurement of cyanobacterial viability becomes crucial for process control. However, there is no established reliable and quick viability assay protocol for cyanobacteria since the task is challenging due to strong interferences of autofluorescence signals of intercellular pigments and fluorescent viability probes when flow cytometry is used. We performed the screening of selected fluorescent viability probes used frequently in bacteria viability assays. The results of our investigation demonstrated the efficacy and reliability of three widely utilised types of viability probes for the assessment of the viability of Synechocystis strains. The developed technique can be possibly utilised for the evaluation of the importance of polyhydroxyalkanoates for cyanobacterial cultures with respect to selected stressor-repeated freezing and thawing. The results indicated that the presence of polyhydroxyalkanoate granules in cyanobacterial cells could hypothetically contribute to the survival of repeated freezing and thawing.
- MeSH
- fluorescence MeSH
- fluorescenční barviva * metabolismus chemie MeSH
- fyziologický stres * MeSH
- mikrobiální viabilita * MeSH
- polyhydroxyalkanoáty metabolismus MeSH
- průtoková cytometrie * MeSH
- sinice metabolismus fyziologie MeSH
- Synechocystis * metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
PURPOSE OF REVIEW: A critical evaluation of contemporary literature regarding the role of big data, artificial intelligence, and digital technologies in precision cardio-oncology care and survivorship, emphasizing innovative and groundbreaking endeavors. RECENT FINDINGS: Artificial intelligence (AI) algorithm models can automate the risk assessment process and augment current subjective clinical decision tools. AI, particularly machine learning (ML), can identify medically significant patterns in large data sets. Machine learning in cardio-oncology care has great potential in screening, diagnosis, monitoring, and managing cancer therapy-related cardiovascular complications. To this end, large-scale imaging data and clinical information are being leveraged in training efficient AI algorithms that may lead to effective clinical tools for caring for this vulnerable population. Telemedicine may benefit cardio-oncology patients by enhancing healthcare delivery through lowering costs, improving quality, and personalizing care. Similarly, the utilization of wearable biosensors and mobile health technology for remote monitoring holds the potential to improve cardio-oncology outcomes through early intervention and deeper clinical insight. Investigations are ongoing regarding the application of digital health tools such as telemedicine and remote monitoring devices in enhancing the functional status and recovery of cancer patients, particularly those with limited access to centralized services, by increasing physical activity levels and providing access to rehabilitation services. SUMMARY: In recent years, advances in cancer survival have increased the prevalence of patients experiencing cancer therapy-related cardiovascular complications. Traditional cardio-oncology risk categorization largely relies on basic clinical features and physician assessment, necessitating advancements in machine learning to create objective prediction models using diverse data sources. Healthcare disparities may be perpetuated through AI algorithms in digital health technologies. In turn, this may have a detrimental effect on minority populations by limiting resource allocation. Several AI-powered innovative health tools could be leveraged to bridge the digital divide and improve access to equitable care.
- Publikační typ
- časopisecké články MeSH
The present study has undertaken the isolation of marine yeasts from mangrove sediment samples and their ability to produce alkaline protease enzymes. A total of 14 yeast isolates were recovered on yeast-malt agar (YMA) and yeast extract peptone dextrose (YEPD) agar medium. After screening for proteolytic activity on skim milk agar, marine yeast isolate, AKB-1 exhibited a hydrolysis zone of 18 mm. Optimal conditions for the enzyme production from yeast isolate AKB-1 were at 30 °C, pH 8, fructose as carbon source, potassium nitrate as nitrogen source, and 25% saline concentration. Under the optimal conditions, the protease enzyme activity of the isolate AKB-1 was observed to be 978 IU/mL. The structural and functional analysis was carried out through FTIR and HPLC analysis for the extracted protease enzyme. Furthermore, the enzyme produced was partially purified by solvent extraction using ethyl acetate and ammonium sulfate precipitation (3.4-fold) followed by dialysis (56.8-fold). The molecular weight of the purified enzyme was observed to be around 60 kDa using SDS-PAGE. The extracted protein showed good antibacterial activity against six different clinical bacterial pathogens and the highest against Bacillus cereus (16 ± 0.5 mm). The extracted protease enzyme was revealed to remove blood stains from cloth within 20 min of application similar to the commercial detergent. The marine yeast isolate was further identified as Candida orthopsilosis AKB-1 (Accession number KY348766) through 18S rRNA sequencing, and a phylogenetic tree was generated.
- MeSH
- antibakteriální látky farmakologie metabolismus chemie izolace a purifikace MeSH
- Bacillus cereus účinky léků MeSH
- bakteriální proteiny * chemie farmakologie metabolismus izolace a purifikace MeSH
- Candida * enzymologie izolace a purifikace genetika klasifikace MeSH
- endopeptidasy * chemie metabolismus izolace a purifikace farmakologie MeSH
- fylogeneze MeSH
- geologické sedimenty mikrobiologie MeSH
- koncentrace vodíkových iontů MeSH
- kultivační média chemie MeSH
- mikrobiální testy citlivosti MeSH
- molekulová hmotnost MeSH
- stabilita enzymů MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
Cervical cancer (CC) is the fourth most common malignant tumor in women worldwide. Detecting different biomarkers together on single cells by novel method mass cytometry could contribute to more precise screening. Liquid-based cytology (LBC) cervical samples were collected (N = 53) from women categorized as normal and precancerous lesions. Human papillomavirus was genotyped by polymerase chain reaction, while simultaneous examination of the expression of 29 proteins was done by mass cytometry (CyTOF). Differences in cluster abundances were assessed with Spearman's rank correlation as well as high dimensional data analysis (t-SNE, FlowSOM). Cytokeratin (ITGA6, Ck5, Ck10/13, Ck14, Ck7) expression patterns allowed determining the presence of different cells in the cervical epithelium. FlowSOM analysis enabled to phenotype cervical cells in five different metaclusters and find new markers that could be important in CC screening. The markers Ck18, Ck18, and CD63 (Metacluster 3) showed significantly increasing associated with severity of the precancerous lesions (Spearman rank correlation rho 0.304, p = 0.0271), while CD71, KLF4, LRIG1, E-cadherin, Nanog and p53 (Metacluster 1) decreased with severity of the precancerous lesions (Spearman rank correlation rho -0.401, p = 0.0029). Other metaclusters did not show significant correlation, but metacluster 2 (Ck17, MCM, MMP7, CD29, E-cadherin, Nanog, p53) showed higher abundance in low- and high-grade intraepithelial lesion cases. CyTOF appears feasible and should be considered when examining novel biomarkers on cervical LBC samples. This study enabled us to characterize different cells in the cervical epithelium and find markers and populations that could distinguish precancerous lesions.
- MeSH
- cervix uteri patologie metabolismus MeSH
- dospělí MeSH
- dysplazie děložního hrdla diagnóza patologie MeSH
- infekce papilomavirem patologie diagnóza virologie MeSH
- Krüppel-like faktor 4 * MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádorové biomarkery * genetika metabolismus MeSH
- nádory děložního čípku * diagnóza patologie genetika MeSH
- prekancerózy * patologie diagnóza MeSH
- průtoková cytometrie * metody MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The marine environment is considered one of the most important ecosystems with high biodiversity. Microorganisms in this environment are variable and coexist with other marine organisms. The microbes associated with other marine organisms produce compounds with biological activity that may help the host's defense against invading organisms. The symbiotic association of bacteria with marine invertebrates is of ecological and biotechnological importance. Biologically active metabolites isolated from bacteria associated with marine invertebrates are considered potential sources of natural antimicrobial molecules for treating infectious diseases. Many studies have been conducted to screen the antimicrobial activity of metabolites produced by bacteria associated with marine invertebrates. This work provides an overview of the advancements in antimicrobial compound research on bacteria associated with marine invertebrates.
- MeSH
- antibakteriální látky * farmakologie MeSH
- antiinfekční látky * farmakologie metabolismus chemie MeSH
- Bacteria * metabolismus izolace a purifikace chemie MeSH
- bezobratlí * mikrobiologie MeSH
- symbióza MeSH
- vodní organismy * mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: The actions required to achieve higher-quality and harmonised global surveillance of child and adolescent movement behaviours (physical activity, sedentary behaviour including screen time, sleep) are unclear. OBJECTIVE: To identify how to improve surveillance of movement behaviours, from the perspective of experts. METHODS: This Delphi Study involved 62 experts from the SUNRISE International Study of Movement Behaviours in the Early Years and Active Healthy Kids Global Alliance (AHKGA). Two survey rounds were used, with items categorised under: (1) funding, (2) capacity building, (3) methods, and (4) other issues (e.g., policymaker awareness of relevant WHO Guidelines and Strategies). Expert participants ranked 40 items on a five-point Likert scale from 'extremely' to 'not at all' important. Consensus was defined as > 70% rating of 'extremely' or 'very' important. RESULTS: We received 62 responses to round 1 of the survey and 59 to round 2. There was consensus for most items. The two highest rated round 2 items in each category were the following; for funding (1) it was greater funding for surveillance and public funding of surveillance; for capacity building (2) it was increased human capacity for surveillance (e.g. knowledge, skills) and regional or global partnerships to support national surveillance; for methods (3) it was standard protocols for surveillance measures and improved measurement method for screen time; and for other issues (4) it was greater awareness of physical activity guidelines and strategies from WHO and greater awareness of the importance of surveillance for NCD prevention. We generally found no significant differences in priorities between low-middle-income (n = 29) and high-income countries (n = 30) or between SUNRISE (n = 20), AHKGA (n = 26) or both (n = 13) initiatives. There was a lack of agreement on using private funding for surveillance or surveillance research. CONCLUSIONS: This study provides a prioritised and international consensus list of actions required to improve surveillance of movement behaviours in children and adolescents globally.
- MeSH
- budování kapacit MeSH
- čas strávený před obrazovkou * MeSH
- celosvětové zdraví MeSH
- cvičení * MeSH
- delfská metoda * MeSH
- dítě MeSH
- konsensus MeSH
- lidé MeSH
- mladiství MeSH
- sedavý životní styl * MeSH
- spánek MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Apple replant disease (ARD) is a significant factor restricting the healthy development of the apple industry. Biological control is an important and sustainable method for mitigating ARD. In this study, a strain of Paenibacillus polymyxa GRY-11 was isolated and screened from the rhizosphere soil of healthy apple trees in old apple orchards in Shandong Province, China, and the effects of strain GRY-11 on soil microbial community and ARD were studied. The result showed that P. polymyxa GRY-11 could effectively inhibit the growth of the main pathogenic fungi that caused ARD, and the inhibition rates of the strain against Fusarium moniliforme, Fusarium proliferatum, Fusarium solani, and Fusarium oxysporum were 80.00%, 71.60%, 75.00%, and 70.00%, respectively. In addition, the fermentation supernatant played an active role in suppressing the growth of pathogenic fungi. The results of the pot experiment showed that the bacterial fertilizer of the GRY-11 promoted the growth of Malus hupehensis seedlings, improved the activity of protective enzymes in plant roots, enhanced the soil enzyme content, and optimized the soil microbial environment. In general, the GRY-11 can be used as an effective microbial preparation to alleviate ARD. Our study offers novel perspectives for the prevention of ARD.
- MeSH
- antibióza MeSH
- biologická kontrola škůdců * MeSH
- biologická ochrana * MeSH
- Fusarium růst a vývoj MeSH
- houby růst a vývoj MeSH
- kořeny rostlin mikrobiologie MeSH
- Malus * mikrobiologie růst a vývoj MeSH
- nemoci rostlin * mikrobiologie prevence a kontrola MeSH
- Paenibacillus polymyxa * izolace a purifikace fyziologie genetika klasifikace MeSH
- půdní mikrobiologie MeSH
- rhizosféra MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Čína MeSH