modul elasticity Dotaz Zobrazit nápovědu
A new method to estimate the selected viscoelastic parameters of foods using damped vibration analysis is presented for the evaluation of fruits and baked products. A flat disk is attached to the flat sample surface using a laser rangefinder that measures the sample thickness in advance, and it is locked by a trigger. Next, the trigger is released to allow the probe to press the sample through the force of gravity. The damped vibration of the probe caused by the deformation of the food is measured by monitoring the displacement of the probe via a linear encoder. The bulk modulus and viscosity are estimated using the fractional Zener model and mass. Young's modulus (E) is estimated independently by determining the maximum velocity of the probe using Hooke's law. Poisson's ratio (ν), and the shear modulus and viscosity are calculated by employing the estimated E and bulk modulus. The bulk modulus, bulk viscosity, shear modulus, shear viscosity, and E of apples were found to be higher than those of bananas. The bulk modulus, bulk viscosity, E, and shear modulus for white bread were lower than those for pound cake, but the ν values were higher, whereas those of sponge cake were intermediate. After drying the baked products for 1 day, most of the parameters of the samples increased, but the value of ν for white bread decreased. The proposed free-falling device estimated the four viscoelastic coefficients, Poisson's ratio, and Young's modulus of the food sample in less than 1 s.
- MeSH
- modul pružnosti MeSH
- pružnost * MeSH
- viskozita MeSH
- Publikační typ
- časopisecké články MeSH
Despite the wide choice of commercial heart valve prostheses, cryopreserved semilunar allograft heart valves (C-AHV) are required, and successfully transplanted in selected groups of patients. The expiration limit (EL) criteria have not been defined yet. Most Tissue Establishments (TE) use the EL of 5 years. From physiological, functional, and surgical point of view, the morphology and mechanical properties of aortic and pulmonary roots represent basic features limiting the EL of C-AHV. The aim of this work was to review methods of AHV tissue structural analysis and mechanical testing from the perspective of suitability for EL validation studies. Microscopic structure analysis of great arterial wall and semilunar leaflets tissue should clearly demonstrate cells as well as the extracellular matrix components by highly reproducible and specific histological staining procedures. Quantitative morphometry using stereological grids has proved to be effective, as the exact statistics was feasible. From mechanical testing methods, tensile test was the most suitable. Young's moduli of elasticity, ultimate stress and strain were shown to represent most important AHV tissue mechanical characteristics, suitable for exact statistical analysis. C-AHV are prepared by many different protocols, so as each TE has to work out own EL for C-AHV.
- MeSH
- alografty MeSH
- aorta MeSH
- aortální chlopeň * chirurgie MeSH
- kryoprezervace * MeSH
- lidé MeSH
- modul pružnosti MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- MeSH
- kontaktní čočky * MeSH
- lidé MeSH
- modul pružnosti MeSH
- smáčivost MeSH
- Check Tag
- lidé MeSH
The outer parenchyma of carrot was tested using dynamic mechanical analysis (DMA), in air with 90% humidity between 30 and 90°C. Temperature plots of storage (SM i.e. elastic) and loss (LM i.e. inelastic) moduli were obtained. The SM and LM values were the basis for the calculation of the loss tangent (LT), the parameter expressing the ratio of inelastic to elastic parenchyma toughness. As expected, the tissue toughness decreased with increasing temperature. For both moduli, two characteristic temperature areas with temperature slope minima were observed--they were termed low (I) and high (II) temperature negative peaks on the temperature slope plots. It was shown that the negative peaks were related to an increase in the inelastic part of the tissue toughness. All plots were dependent on the temperature rate: increasing the temperature rate (from 0.5 to 2°C/min) resulted in a shift of both the negative peaks I and II to higher temperatures, thereby reducing I and increasing II. It was shown that the observed behaviour cannot be described by simple kinetic equations due to the time dependent and complicated character of the thermally induced changes. These changes were interpreted as a consequence of pore protein denaturation followed by changes of the stress inside the parenchyma cells.
This work deals with the mechanical characterization by depth-sensing indentation (DSI) of PLLA and PLDA composites reinforced with micro-particles of Mg (up to 15wt%), which is a challenging task since the indented volume must provide information of the bulk composite, i.e. contain enough reinforcement particles. The composites were fabricated by combining hot extrusion and compression moulding. Physico-chemical characterization by TGA and DSC indicates that Mg anticipates the thermal degradation of the polymers but does not compromise their stability during processing. Especial emphasis is devoted to determine the effect of strain rate and Mg content on mechanical behavior, thus important information about the visco-elastic behavior and time-dependent response of the composites is obtained. Relevant for the intended application is that Mg addition increases the elastic modulus and hardness of the polymeric matrices and induces a higher resistance to flow. The elastic modulus obtained by DSI experiments shows good agreement with that obtained by uniaxial compression tests. The results indicate that DSI experiments are a reliable method to calculate the modulus of polymeric composites reinforced with micro-particles. Taking into consideration the mechanical properties results, PLA/Mg composite could be used as substitute for biodegradable monolithic polymeric implants already in the market for orthopedics (freeform meshes, mini plates, screws, pins, …), craniomaxillofacial, or spine.
High resolution imaging of biological structures and changes induced by various agents such as drugs and toxins is commonly performed by fluorescence and electron microscopy (EM). Although high-resolution imaging is possible with EM, the requirements for fixation and staining of samples for image contrast severely limits the study of living organisms. Atomic force microscopy (AFM), on the other hand, is capable of simultaneous nanometer spatial resolution and piconewton force detection, allowing detailed study of cell surface morphology and monitoring cytomechanical information. We present a method that images and studies mechanically characterized cells using AFM. We used a HeLa cell line (cervix carcinoma cell), which is sensitive to photodynamic treatment (PDT); growth media as a scanning surrounding; atomic force microscopy NT-MDT Aura for cytomechanical measurement; and scanning electron microscope Hitachi Su 6600 for control images of the cells. The modulus of elasticity for intact and photodynamically damaged cells can indicate mechanical changes to the main properties of cells. Cell elasticity changes can provide information on the degree or value of cell damage, for example after PDT. Measurements were carried out on approximately sixty cells, including three independent experiments on a control group and on sixty cells in a photodamaged group. Cells before PDT show higher elasticity: the median of Young´s modulus on the nucleus was 35.283 kPa and outside of the nucleus 107.442 kPa. After PDT, the median of Young's modulus on the nucleus was 61.144 kPa and outside of the nucleus was 193.605 kPa.
Shear wave elastography (SWE) is a non-invasive diagnostic imaging technique that maps the elastic properties of tissues. This modality is being increasingly developed in other areas of medicine, offering a new type of high-quality ultrasound examination, since it increases specificity and thus improves diagnostic accuracy. This method is similar to manual palpation, showing the elastic properties of biological tissues and providing a kind of reconstruction of the internal structure of soft tissues based on measurement of the response to tissue compression. In ophthalmology, it already appears promising for diagnosis and in evaluating changes in extraocular muscles and orbital tissues in patients with endocrine orbitopathy. Shear wave elastography offers three main innovations: the quantitative aspect, dimensional resolution, and real-time imaging ability. Determination of the utilization rate of this method and its inclusion in the diagnosis of endocrine orbitopathy is still a question and the object of clinical studies currently under way.
Polypropylene (PP) belongs among the most important commodity plastics due to its widespread application. The color of the PP products can be achieved by the addition of pigments, which can dramatically affect its material characteristics. To maintain product consistency (dimensional, mechanical, and optical), knowledge of these implications is of great importance. This study investigates the effect of transparent/opaque green masterbatches (MBs) and their concentration on the physico-mechanical and optical properties of PP produced by injection molding. The results showed that selected pigments had different nucleating abilities, affecting the dimensional stability and crystallinity of the product. The rheological properties of pigmented PP melts were affected as well. Mechanical testing showed that the presence of both pigments increased the tensile strength and Young's modulus, while the elongation at break was significantly increased only for the opaque MB. The impact toughness of colored PP with both MBs remained similar to that of neat PP. The optical properties were well controlled by the dosing of MBs, and were further related to the RAL color standards, as demonstrated by CIE color space analysis. Finally, the selection of appropriate pigments for PP should be considered, especially in areas where dimensional and color stability, as well as product safety, are highly important.
- MeSH
- houby MeSH
- modul pružnosti MeSH
- plastické hmoty * MeSH
- polypropyleny * MeSH
- pomocné látky MeSH
- Publikační typ
- časopisecké články MeSH
In this paper, linearized approximations of both the forward and the inverse problems of resonant ultrasound spectroscopy for the determination of mechanical properties of thin surface layers are presented. The linear relations between the frequency shifts induced by the deposition of the layer and the in-plane elastic coefficients of the layer are derived and inverted, the applicability range of the obtained linear model is discussed by a comparison with nonlinear models and finite element method (FEM), and an algorithm for the estimation of experimental errors in the inversely determined elastic coefficients is described. In the final part of the paper, the linearized inverse procedure is applied to evaluate elastic coefficients of a 310 nm thick diamond-like carbon layer deposited on a silicon substrate.
Recently, porous metallic materials have been extensively studied as candidates for use in the fabrication of scaffolds and augmentations to repair trabecular bone defects, e.g. in surroundings of joint replacements. Fabricating these complex structures by using common approaches (e.g., casting and machining) is very challenging. Therefore, rapid prototyping techniques, such as selective laser melting (SLM), have been investigated for these applications. In this study, we characterized a highly porous (87 vol.%) 316L stainless steel scaffold prepared by SLM. 316L steel was chosen because it presents a biomaterial still widely used for fabrication of joint replacements and, from the practical point of view, use of the same material for fabrication of an augmentation and a joint replacement is beneficial for corrosion prevention. The results are compared to the reported properties of two representative nonporous 316L stainless steels prepared either by SLM or casting and subsequent hot forging. The microstructural and mechanical properties and the surface chemical composition and interaction with the cells were investigated. The studied material exhibited mechanical properties that were similar to those of trabecular bone (compressive modulus of elasticity ~0.15GPa, compressive yield strength ~3MPa) and cytocompatibility after one day that was similar to that of wrought 316L stainless steel, which is a commonly used biomaterial. Based on the obtained results, SLM is a suitable method for the fabrication of porous 316L stainless steel scaffolds with highly porous structures.
- MeSH
- fotoelektronová spektroskopie MeSH
- lasery * MeSH
- lidé MeSH
- modul pružnosti účinky léků MeSH
- nádorové buněčné linie MeSH
- nerezavějící ocel farmakologie MeSH
- pevnost v tahu účinky léků MeSH
- poréznost MeSH
- povrchové vlastnosti MeSH
- testování materiálů metody MeSH
- tvar buňky MeSH
- železo farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH