Úvod: ERAS (enhanced recovery after surgery) v oblasti kolorektální chirurgie vede ke zlepšení kvality péče a efektivnějšímu využití zdrojů. Navzdory těmto pozitivním výsledkům je penetrace ERAS v České republice nízká. Cílem této práce je představit obecnou metodiku implementace ERAS protokolu v oblasti kolorektální chirurgie. Metody: Metodika vychází z dlouholeté zkušenosti autorů při zavádění klinických protokolů na různých pracovištích v České republice, stejně tak jako z publikovaných zahraničních zkušeností. V sekci výsledků je tato metodika detailně popsána a pro ilustraci doplněna o data získaná při implementaci ERAS protokolu na pracovišti autora. Výsledky: Přípravná fáze implementace zahrnuje hloubkový audit kvality péče a přípravu ERAS protokolu. Smyslem auditu je odhalit oblasti péče, kde je žádoucí standardizace, případně cílena změna klinického stylu. Součástí implementační fáze je zaškolení personálu, technické zajištění implementace, zařazení protokolu do oběhu, kontrola adherence a vyhodnocení pilotní fáze s následnou úpravou protokolu. Vyhodnocovací fáze spočívá ve sběru dat, vedení prospektivní databáze a pravidelných vyhodnoceních. Závěr: Uvedená metodika popisuje jednotlivé kroky v procesu implementace klinického protokolu do praxe. Tento text může sloužit jako manuál pro zavedení ERAS protokolu v kolorektální chirurgii na libovolném pracovišti.
Introduction: Enhanced recovery after surgery (ERAS) protocols in colorectal surgery leads to improved quality of care and more efficient resource utilization. Despite these positive outcomes, the penetration of ERAS protocols in the Czech Republic is low. The aim of this study is to present a general methodology for implementing an ERAS protocol in colorectal surgery. Methods: The methodology is based on the authors’ extensive experience in implementing clinical protocols at various institutions in the Czech Republic, as well as published international experiences. This methodology is described in detail and supplemented with data obtained during implementation of an ERAS program at the author’s institution. Results: The preparatory phase includes in-depth quality of care audits and preparation of an ERAS protocol. The purpose of the audits is to identify areas of care where standardization or targeted changes in clinical practice are desirable. The implementation phase involves staff training, technical implementation support, protocol dissemination, adherence monitoring, and evaluation of a pilot phase with subsequent protocol adjustments. The evaluation phase involves data collection, maintaining a prospective database, and regular assessments. Conclusion: The presented methodology describes the individual steps in the process of implementing a clinical protocol into practice. This text can serve as a manual for implementing an ERAS protocol in colorectal surgery at any institution.
- Keywords
- protokol ERAS,
- MeSH
- Clinical Protocols MeSH
- Colorectal Surgery * nursing MeSH
- Humans MeSH
- Perioperative Care * MeSH
- Practice Guidelines as Topic MeSH
- Check Tag
- Humans MeSH
A critical component of the EuroFlow standardization of leukemia/lymphoma immunophenotyping is instrument setup. Initially, the EuroFlow consortium developed a step-by-step standard operating protocol for instrument setup of ≥8-color flow cytometers that were available in 2006, when the EuroFlow activities started. Currently, there are 14 instruments from 9 manufacturers capable of 3-laser excitation and ≥8 color measurements. The specific adaptations required in the instrument set-up to enable them to acquire the standardized 8-color EuroFlow protocols are described here. Overall, all 14 instruments can be fitted with similar violet, blue and red lasers for simultaneous measurements of ≥8 fluorescent dyes. Since individual instruments differ both on their dynamic range (scale) and emission filters, it is not accurate to simply recalculate the target values to different scale, but adjustment of PMT voltages to a given emission filter and fluorochrome, is essential. For this purpose, EuroFlow has developed an approach using Type IIB (spectrally matching) particles to set-up standardized and fully comparable fluorescence measurements, in instruments from different manufacturers, as demonstrated here for the FACSCanto II, and Navios and MACSQuant flow cytometers. Data acquired after such adjustment on any of the tested cytometry platforms could be fully superimposed and therefore analyzed together. The proposed approach can be used to derive target values for any combination of spectrally distinct fluorochromes and any distinct emission filter of any new flow cytometry platform, which enables the measurement of the 8-color EuroFlow panels in a standardized way, by creating superimposable datafiles.
- MeSH
- Hematologic Neoplasms diagnosis MeSH
- Immunophenotyping instrumentation standards MeSH
- Humans MeSH
- Flow Cytometry instrumentation standards MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
[1st ed.] xviii, 809 s. : il.
Cílem této studie bylo vyvinout standardizované spirální CT vyšetření hlavy, těla a končetin ve snaze získat dobrý časový výkon a co největší diagnostickou přesnost v počátečním radiologickém vyšetřování polytraumatizoyaných pacientů. Předpokladem tohoto vyšetření je oběhová stabilita pacienta. U nestabilních pacientů je nutno řešit situaci chirurgicky bez vyšetření. Všech 35 pacientů bylo vyšetřeno podle standardizovaného CT protokolu. Po nativním vyšetření hlavy bylo provedeno vyšetření hrudníku, břicha a pánve s intravenózni aplikací kontrast¬ ní látky (příležitostně modifikováno). Všechna data v lékařské zprávě byla zkompletována a výstupm' CT vyšetření bylo srovnáno s konečnou diagnózou. Celkem bylo vyšetřeno 14 poranění hlavy, 23 poranění hrudníku, 17 poranění břicha, 20 poranění pánve, a bylo objeveno 7 fraktur páteře a 5 fraktur končetin. Průměrná doba vyšetření byla kolem 12 minut - v rozmezí 8-15 minut. Spirální CT vyšetřem' proti sekvenčnímu CT vyšetření zvyšuje zřetelně jednak rychlost vyšetřem, jednak i jeho diagnostickou přesnost. Proto jej doporučujeme jako metodu výběru primárního rentgenového vyšetření u polytraumatizovaných pacientů.
The aim of this study was to develop a standardised spiral CT examination protocol including head, body and extremities to achieve good time efficiency and the diagnostic accuracy during initial radiological examination of polytraumatised patients. The precondition for this examination is circulatory stability of the patient. In instable patients the situation must be solved surgically without this examination. All 35 patients were examined according to a standardised CT protocol. After native examination of the head, the examination of the thorax, abdomen and pelvis was performed with administration of intravenous contrast medium (occasionally modified). All data in the medical report were completed and the outcome of the CT examination was compared with the final diagnosis. In total, 14 head injuries, 23 thoracic injuries, 17 abdominal and 20 pelvic injuries were examined, and 7 spinal fractures and 5 fractures of the extremities were found. The inean examination time was ca. 12 min. (range 8-15 min.). The spiral CT examination in comparison with the sequential CT examination is markedly quicker and its diagnostic accuracy is higher. For these reasons we recommend this examination as the method of choice for initial radiological examination in polytraumatised patients.
- MeSH
- Adult MeSH
- Clinical Protocols methods standards MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Tomography, X-Ray Computed methods standards instrumentation MeSH
- Multiple Trauma diagnosis classification MeSH
- Aged MeSH
- Traumatology MeSH
- Emergency Medicine MeSH
- Emergency Medical Services methods standards instrumentation MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
2nd ed. xxiv, 1146 s. : il.
- MeSH
- Chemistry Techniques, Analytical MeSH
- Proteins MeSH
- Reference Books MeSH
- Publication type
- Handbook MeSH
- Conspectus
- Biochemie. Molekulární biologie. Biofyzika
- NML Fields
- biochemie
- chemie, klinická chemie
PURPOSE: Absorbed dose calibration for gamma stereotactic radiosurgery is challenging due to the unique geometric conditions, dosimetry characteristics, and nonstandard field size of these devices. Members of the American Association of Physicists in Medicine (AAPM) Task Group 178 on Gamma Stereotactic Radiosurgery Dosimetry and Quality Assurance have participated in a round-robin exchange of calibrated measurement instrumentation and phantoms exploring two approved and two proposed calibration protocols or formalisms on ten gamma radiosurgery units. The objectives of this study were to benchmark and compare new formalisms to existing calibration methods, while maintaining traceability to U.S. primary dosimetry calibration laboratory standards. METHODS: Nine institutions made measurements using ten gamma stereotactic radiosurgery units in three different 160 mm diameter spherical phantoms [acrylonitrile butadiene styrene (ABS) plastic, Solid Water, and liquid water] and in air using a positioning jig. Two calibrated miniature ionization chambers and one calibrated electrometer were circulated for all measurements. Reference dose-rates at the phantom center were determined using the well-established AAPM TG-21 or TG-51 dose calibration protocols and using two proposed dose calibration protocols/formalisms: an in-air protocol and a formalism proposed by the International Atomic Energy Agency (IAEA) working group for small and nonstandard radiation fields. Each institution's results were normalized to the dose-rate determined at that institution using the TG-21 protocol in the ABS phantom. RESULTS: Percentages of dose-rates within 1.5% of the reference dose-rate (TG-21+ABS phantom) for the eight chamber-protocol-phantom combinations were the following: 88% for TG-21, 70% for TG-51, 93% for the new IAEA nonstandard-field formalism, and 65% for the new in-air protocol. Averages and standard deviations for dose-rates over all measurements relative to the TG-21+ABS dose-rate were 0.999±0.009 (TG-21), 0.991±0.013 (TG-51), 1.000±0.009 (IAEA), and 1.009±0.012 (in-air). There were no statistically significant differences (i.e., p>0.05) between the two ionization chambers for the TG-21 protocol applied to all dosimetry phantoms. The mean results using the TG-51 protocol were notably lower than those for the other dosimetry protocols, with a standard deviation 2-3 times larger. The in-air protocol was not statistically different from TG-21 for the A16 chamber in the liquid water or ABS phantoms (p=0.300 and p=0.135) but was statistically different from TG-21 for the PTW chamber in all phantoms (p=0.006 for Solid Water, 0.014 for liquid water, and 0.020 for ABS). Results of IAEA formalism were statistically different from TG-21 results only for the combination of the A16 chamber with the liquid water phantom (p=0.017). In the latter case, dose-rates measured with the two protocols differed by only 0.4%. For other phantom-ionization-chamber combinations, the new IAEA formalism was not statistically different from TG-21. CONCLUSIONS: Although further investigation is needed to validate the new protocols for other ionization chambers, these results can serve as a reference to quantitatively compare different calibration protocols and ionization chambers if a particular method is chosen by a professional society to serve as a standardized calibration protocol.
- MeSH
- Radiotherapy Dosage MeSH
- Phantoms, Imaging MeSH
- Calibration standards MeSH
- Clinical Protocols standards MeSH
- Radiosurgery instrumentation methods standards MeSH
- Radiometry methods standards MeSH
- Water MeSH
- Air MeSH
- Gamma Rays therapeutic use MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Geographicals
- United States MeSH