Wound healing represents a complex and evolutionarily conserved process across vertebrates, encompassing a series of life-rescuing events. The healing process runs in three main phases: inflammation, proliferation, and maturation/remodelling. While acute inflammation is indispensable for cleansing the wound, removing infection, and eliminating dead tissue characterised by the prevalence of neutrophils, the proliferation phase is characterised by transition into the inflammatory cell profile, shifting towards the prevalence of macrophages. The proliferation phase involves development of granulation tissue, comprising fibroblasts, activated myofibroblasts, and inflammatory and endothelial cells. Communication among these cellular components occurs through intercellular contacts, extracellular matrix secretion, as well as paracrine production of bioactive factors and proteolytic enzymes. The proliferation phase of healing is intricately regulated by inflammation, particularly interleukin-6. Prolonged inflammation results in dysregulations during the granulation tissue formation and may lead to the development of chronic wounds or hypertrophic/keloid scars. Notably, pathological processes such as autoimmune chronic inflammation, organ fibrosis, the tumour microenvironment, and impaired repair following viral infections notably share morphological and functional similarities with granulation tissue. Consequently, wound healing emerges as a prototype for understanding these diverse pathological processes. The prospect of gaining a comprehensive understanding of wound healing holds the potential to furnish fundamental insights into modulation of the intricate dialogue between cancer cells and non-cancer cells within the cancer ecosystem. This knowledge may pave the way for innovative approaches to cancer diagnostics, disease monitoring, and anticancer therapy.
- MeSH
- autoimunita * MeSH
- hojení ran * imunologie MeSH
- interleukin-6 * metabolismus imunologie MeSH
- lidé MeSH
- nádorové mikroprostředí * imunologie MeSH
- nádory * imunologie metabolismus patologie MeSH
- stárnutí * imunologie MeSH
- zánět * imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Breast cancer is the most frequently diagnosed cancer in women worldwide. Although dramatically increased survival rates of early diagnosed cases have been observed, late diagnosed patients and metastatic cancer may still be considered fatal. The present study's main focus was on cancer‐associated fibroblasts (CAFs) which is an active component of the tumor microenvironment (TME) regulating the breast cancer ecosystem. Transcriptomic profiling and analysis of CAFs isolated from breast cancer skin metastasis, cutaneous basal cell carcinoma, and squamous cell carcinoma unravelled major gene candidates such as IL6, VEGFA and MFGE8 that induced co‐expression of keratins‐8/‐14 in the EM‐G3 cell line derived from infiltrating ductal breast carcinoma. Western blot analysis of selected keratins (keratin‐8, ‐14, ‐18, ‐19) and epithelial‐mesenchymal transition‐associated markers (SLUG, SNAIL, ZEB1, E‐/N‐cadherin, vimentin) revealed specific responses pointing to certain heterogeneity of the studied CAF populations. Experimental in vitro treatment using neutralizing antibodies against IL-6, VEGF‐A and MFGE8 attenuated the modulatory effect of CAFs on EM‐G3 cells. The present study provided novel data in characterizing and understanding the interactions between CAFs and EM‐G3 cells in vitro. CAFs of different origins support the pro‐inflammatory microenvironment and influence the biology of breast cancer cells. This observation potentially holds significant interest for the development of novel, clinically relevant approaches targeting the TME in breast cancer. Furthermore, its implications extend beyond breast cancer and have the potential to impact a wide range of other cancer types.
- MeSH
- antigeny povrchové MeSH
- fibroblasty asociované s nádorem * metabolismus MeSH
- fibroblasty metabolismus MeSH
- keratiny genetika metabolismus MeSH
- lidé MeSH
- maligní melanom kůže MeSH
- MFC-7 buňky MeSH
- mléčné bílkoviny genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- nádorové mikroprostředí genetika MeSH
- nádory prsu * farmakoterapie genetika metabolismus MeSH
- prognóza MeSH
- transkriptom MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Intestinal epithelial cells have the capacity to upregulate MHCII molecules in response to certain epithelial-adhesive microbes, such as segmented filamentous bacteria (SFB). However, the mechanism regulating MHCII expression as well as the impact of epithelial MHCII-mediated antigen presentation on T cell responses targeting those microbes remains elusive. Here, we identify the cellular network that regulates MHCII expression on the intestinal epithelium in response to SFB. Since MHCII on the intestinal epithelium is dispensable for SFB-induced Th17 response, we explored other CD4+ T cell-based responses induced by SFB. We found that SFB drive the conversion of cognate CD4+ T cells to granzyme+ CD8α+ intraepithelial lymphocytes. These cells accumulate in small intestinal intraepithelial space in response to SFB. Yet, their accumulation is abrogated by the ablation of MHCII on the intestinal epithelium. Finally, we show that this mechanism is indispensable for the SFB-driven increase in the turnover of epithelial cells in the ileum. This study identifies a previously uncharacterized immune response to SFB, which is dependent on the epithelial MHCII function.
Glial cells expressing neuron-glial antigen 2 (NG2), also known as oligodendrocyte progenitor cells (OPCs), play a critical role in maintaining brain health. However, their ability to differentiate after ischemic injury is poorly understood. The aim of this study was to investigate the properties and functions of NG2 glia in the ischemic brain. Using transgenic mice, we selectively labeled NG2-expressing cells and their progeny in both healthy brain and after focal cerebral ischemia (FCI). Using single-cell RNA sequencing, we classified the labeled glial cells into five distinct subpopulations based on their gene expression patterns. Additionally, we examined the membrane properties of these cells using the patch-clamp technique. Of the identified subpopulations, three were identified as OPCs, whereas the fourth subpopulation had characteristics indicative of cells likely to develop into oligodendrocytes. The fifth subpopulation of NG2 glia showed astrocytic markers and had similarities to neural progenitor cells. Interestingly, this subpopulation was present in both healthy and post-ischemic tissue; however, its gene expression profile changed after ischemia, with increased numbers of genes related to neurogenesis. Immunohistochemical analysis confirmed the temporal expression of neurogenic genes and showed an increased presence of NG2 cells positive for Purkinje cell protein-4 at the periphery of the ischemic lesion 12 days after FCI, as well as NeuN-positive NG2 cells 28 and 60 days after injury. These results suggest the potential development of neuron-like cells arising from NG2 glia in the ischemic tissue. Our study provides insights into the plasticity of NG2 glia and their capacity for neurogenesis after stroke.
- MeSH
- antigeny metabolismus MeSH
- astrocyty metabolismus MeSH
- ischemie mozku * metabolismus MeSH
- mozek metabolismus MeSH
- myši transgenní MeSH
- myši MeSH
- nervové kmenové buňky * metabolismus MeSH
- neuroglie metabolismus MeSH
- oligodendroglie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
46 stran : ilustrace (převážně barevné) ; 24 cm
Sborník prací a směrnic, které se zaměřují na CAR-T imunoterapii difuzního velkobuněčného B-fymfomu. Určeno odborné veřejnosti.
- MeSH
- chimerické antigenní receptory MeSH
- difúzní velkobuněčný B-lymfom terapie MeSH
- hematologické nádory terapie MeSH
- imunoterapie MeSH
- protinádorové látky imunologicky aktivní MeSH
- Publikační typ
- sborníky MeSH
- směrnice pro lékařskou praxi MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- onkologie
Statins, the drugs used for the treatment of hypercholesterolemia, have come into the spotlight not only as chemoadjuvants, but also as potential stem cell modulators in the context of regenerative therapy. In our study, we compared the in vitro effects of all clinically used statins on the viability of human pancreatic cancer (MiaPaCa-2) cells, non-cancerous human embryonic kidney (HEK 293) cells and adipose-derived mesenchymal stem cells (ADMSC). Additionally, the effect of statins on viability of MiaPaCa-2 and ADMSC cells spheroids was tested. Furthermore, we performed a microarray analysis on ADMSCs treated with individual statins (12 μM) and compared the importance of the effects of statins on gene expression between stem cells and pancreatic cancer cells. Concentrations of statins that significantly affected cancer cells viability (< 40 μM) did not affect stem cells viability after 24 h. Moreover, statins that didn ́t affect viability of cancer cells grown in a monolayer, induce the disintegration of cancer cell spheroids. The effect of statins on gene expression was significantly less pronounced in stem cells compared to pancreatic cancer cells. In conclusion, the low efficacy of statins on non-tumor and stem cells at concentrations sufficient for cancer cells growth inhibition, support their applicability in chemoadjuvant tumor therapy.
- MeSH
- buněčné sféroidy účinky léků MeSH
- HEK293 buňky MeSH
- lidé MeSH
- mezenchymální kmenové buňky * účinky léků metabolismus MeSH
- nádorové buněčné linie MeSH
- nádory slinivky břišní * farmakoterapie patologie metabolismus MeSH
- statiny * farmakologie MeSH
- viabilita buněk * účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
While phosphodiesterase-5 inhibition (PED5i) may prevent hypertrophy and failure in pressure-overloaded heart in an experimental model, the impact of PDE5i on volume-overload (VO)-induced hypertrophy is unknown. It is also unclear whether the hypertrophied right ventricle (RV) and left ventricle (LV) differ in their responsiveness to long-term PDE5i and if this therapy affects renal function. The goal of this study was to elucidate the effect of PDE5i treatment in VO due to aorto-caval fistula (ACF) and to compare PDE5i treatment with standard heart failure (HF) therapy with angiotensin-converting enzyme inhibitor (ACEi). ACF/sham procedure was performed on male HanSD rats aged 8 weeks. ACF animals were randomized for PDE5i sildenafil, ACEi trandolapril, or placebo treatments. After 20 weeks, RV and LV function (echocardiography, pressure-volume analysis), myocardial gene expression, and renal function were studied. Separate rat cohorts served for survival analysis. ACF led to biventricular eccentric hypertrophy (LV: +68%, RV: +145%), increased stroke work (LV: 3.6-fold, RV: 6.7-fold), and reduced load-independent systolic function (PRSW, LV: -54%, RV: -51%). Both ACF ventricles exhibited upregulation of the genes of myocardial stress and glucose metabolism. ACEi but not PDE5i attenuated pulmonary congestion, LV remodeling, albuminuria, and improved survival (median survival in ACF/ACEi was 41 weeks vs. 35 weeks in ACF/placebo, p = .02). PDE5i increased cyclic guanosine monophosphate levels in the lungs, but not in the RV, LV, or kidney. PDE5i did not improve survival rate and cardiac and renal function in ACF rats, in contrast to ACEi. VO-induced HF is not responsive to PDE5i therapy.
- MeSH
- inhibitory ACE * farmakologie MeSH
- inhibitory fosfodiesterasy 5 * farmakologie MeSH
- kardiomegalie farmakoterapie MeSH
- krysa rodu rattus MeSH
- remodelace komor * MeSH
- srdeční selhání * farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Publikační typ
- abstrakt z konference MeSH
Soft tissue sarcomas are aggressive mesenchymal-origin malignancies. Undifferentiated pleomorphic sarcoma (UPS) belongs to the aggressive, high-grade, and least characterized sarcoma subtype, affecting multiple tissues and metastasizing to many organs. The treatment of localized UPS includes surgery in combination with radiation therapy. Metastatic forms are treated with chemotherapy. Immunotherapy is a promising treatment modality for many cancers. However, the development of immunotherapy for UPS is limited due to its heterogeneity, antigenic landscape variation, lower infiltration with immune cells, and a limited number of established patient-derived UPS cell lines for preclinical research. In this study, we established and characterized a novel patient-derived UPS cell line, JBT19. The JBT19 cells express PD-L1 and collagen, a ligand of the immune checkpoint molecule LAIR-1. JBT19 cells can form spheroids in vitro and solid tumors in immunodeficient nude mice. We found JBT19 cells induce expansion of JBT19-reactive autologous and allogeneic NK, T, and NKT-like cells, and the reactivity of the expanded cells was associated with cytotoxic impact on JBT19 cells. The PD-1 and LAIR-1 ligand-expressing JBT19 cells show ex vivo immunogenicity and effective in vivo xenoengraftment properties that can offer a unique resource in the preclinical research developing novel immunotherapeutic interventions in the treatment of UPS.
- MeSH
- antigeny CD274 metabolismus MeSH
- buněčné linie MeSH
- imunoterapie MeSH
- lidé MeSH
- ligandy MeSH
- maligní fibrózní histiocytom * MeSH
- myši nahé MeSH
- myši MeSH
- sarkom * patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Úvod: Převod biologické léčby (switch) z originálního na biosimilární infliximab je prokazatelně efektivním a bezpečným postupem. Méně informací je v klinické praxi o switchi z jednoho biosimilárního léčiva na jiný. Cíl: Prospektivní, observační studie provedená v jednom terciálním IBD centru v letech 2021 a 2022 se zaměřila na posouzení účinnosti a bezpečnosti léčby po převedení z jednoho biosimilárního léčiva (CT-P13) na jiný biosimilární infliximab SB-2 u nemocných s idiopatickými střevními záněty. Metodika: Do sledování bylo zařazeno celkem 287 nemocných s Crohnovou chorobou a ulcerózní kolitidou, kteří byli v průměru 6 měsíců před ne-medicínským switchem v klinické a laboratorní remisi onemocnění. Výsledky: V průběhu 13 měsíců po provedené změně léčby bylo zjištěno, že perzistence na léčbě po switch na biosimilární infliximab SB-2 byla 86,4 % a nedošlo k významnějším změnám v klinických ani biologických parametrech aktivity IBD. Předčasně muselo po provedení switche ukončit léčbu 39 nemocných (13,9 %), a to pro ztrátu účinnosti, vznik vedlejších efektů terapie nebo pro ztrátu sledování. Nebyly zjištěny vyšší projevy imunogenicity léčby po provedené změně léčby z infliximabu CT-P13 na infliximab SB-2. Závěr: Ne-medicínský switch biologické léčby z jednoho (CT-P13) na jiný biosimilární infliximab (SB-2) není spojen s vyšším rizikem destabilizace IBD nebo s vyšším rizikem imunogenicity.
Introduction: Therapeutical switch from originator to biosimilar infliximab has been proved as effective and safety procedure. We have a few information about non-medical swich from one biosimilar to the another biosimilar infiximab. Aim: This is a prospective observational study from one tercial IBD center, performed in 2021 and 2022 which was focused on efficacy and safety after switch from infliximab CT-P13 to infliximab SB-2 in patients with IBD. Methods: The cohort group comprised with 287 patients with IBD who have been consecutively treated with infliximab CT-P13 and they were switched to infliximab SB-2. All the re cruited patients were in clinical and biological sustained remission at mean for 6 months before the switch. Results: We proved that persistence on infliximab SB-2 therapy after the switch was 86.4% of treated patients, no significant changes in clinical inflammatory activities and biological parameters have been detected after the switch. The therapy termination due to side effects or loss of response in 39 patients (13.9%) has been detected due to lost of clinical response, side effects or lost of follow-up. No higher immunogenicity after the switch was found. Conclusion: Non-medical switch from one biosimilar infliximab (CT-P13) to another one (SB-2) was not associated with higher risks of disease destabilisation or immunogenicity.