Glucocorticoids are potent anti-inflammatory drugs, although their use is associated with severe side effects. Loading glucocorticoids into suitable nanocarriers can significantly reduce these undesirable effects. Macrophages play a crucial role in inflammation, making them strategic targets for glucocorticoid-loaded nanocarriers. The main objective of this study is to develop a glucocorticoid-loaded PLGA nanocarrier specifically targeting liver macrophages, thereby enabling the localized release of glucocorticoids at the site of inflammation. Dexamethasone acetate (DA)-loaded PLGA nanospheres designed for passive macrophage targeting are synthesized using the nanoprecipitation method. Two types of PLGA NSs in the size range of 100-300 nm are prepared, achieving a DA-loading efficiency of 19 %. Sustained DA release from nanospheres over 3 days is demonstrated. Flow cytometry analysis using murine bone marrow-derived macrophages demonstrates the efficient internalization of fluorescent dye-labeled PLGA nanospheres, particularly into pro-inflammatory macrophages. Significant down-regulation in pro-inflammatory cytokine genes mRNA is observed without apparent cytotoxicity after treatment with DA-loaded PLGA nanospheres. Subsequent experiments in mice confirm liver macrophage-specific nanospheres accumulation following intravenous administration using in vivo imaging, flow cytometry, and fluorescence microscopy. Taken together, the data show that the DA-loaded PLGA nanospheres are a promising drug-delivery system for the treatment of inflammatory liver diseases.
- MeSH
- antiflogistika farmakologie chemie MeSH
- dexamethason * farmakologie chemie analogy a deriváty MeSH
- játra * účinky léků metabolismus MeSH
- kopolymer kyseliny glykolové a mléčné * chemie MeSH
- makrofágy * účinky léků metabolismus MeSH
- myši MeSH
- nanokuličky * chemie MeSH
- nosiče léků chemie farmakologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Pulmonary alveolar proteinosis (PAP) is a rare disease characterised by excessive accumulation of surfactant components in alveolar macrophages, alveoli, and peripheral airways. The accumulation of surfactant is associated with only a minimal inflammatory response but can lead to the development of pulmonary fibrosis. Three clinical forms of PAP are distinguished - primary, secondary and congenital. In recent years, significant findings have helped to clarify the ethiology and pathogenesis of the disease. Apart from impaired surfactant protein function, a key role in the development of PAP is played by signal pathway of granulocyte and macrophage colonies stimulating growth factor (GM-CSF) which is necessary for the functioning of alveolar macrophages and for surfactant homeostasis. Surfactant is partially degraded by alveolar macrophages that are stimulated by GM-CSF. The role of GM-CSF has been shown especially in primary PAP, which is currently considered an autoimmune disease involving the development of GM-CSF neutralising autoantibodies. Clinically, the disease may be silent or manifest with dyspnoeic symptoms triggered by exertion and cough. However, there is a 10 to 15% rate of patients who develop respiratory failure. Total pulmonary lavage is regarded as the standard method of treatment. In addition, recombinant human GM-CSF has been studied as a prospective therapy for the treatment of PAP.
- MeSH
- alveolární makrofágy * imunologie patologie MeSH
- faktor stimulující granulocyto-makrofágové kolonie * metabolismus MeSH
- lidé MeSH
- plicní alveolární proteinóza * patologie MeSH
- vzácné nemoci * patologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The etiology of bone loss in celiac disease (CeD) remains a clinical challenge, with uncertainties present such as the extent of involvement of malabsorption and inflammation-induced osteoresorption processes in development of osteopenia/osteoporosis (OPN/OP), or reasons for failure to achieve healthy bone mass (BMD) even after long-term gluten-free diet (GFD) treatment. This observational prospective study explores the in vitro osteoclastogenic potential of peripheral blood precursors originating from adult active (newly diagnosed and untreated) celiac disease patients (aCeD) and describes the longitudinal changes in osteoclastogenesis after long-term adherence to GFD. To find connections between in vitro observations and in vivo bone metabolism changes, serum levels of 25(OH)D3, PTH, bCTX, PINP, CRP, IL-6, RANKL and OPG were measured before and after GFD and levels of these markers were correlated with the rate of osteoclastogenesis in vitro. OPG and IL-6 showed associations with BMD and/or presence of OPN/OP. Patients after GFD (CeD-GFD) exhibited improved BMD and increased serum 25(OH)D3 levels, alongside reduced bCTX and PINP levels. Compared to healthy donors, aCeD osteoclast genesis in vitro was higher and, surprisingly, remained elevated even in CeD-GFD patients. Negative correlation was found between osteoclastogenesis rate and serum OPG in aCeD, while osteoclastogenesis rate positively correlated with PTH in CeD-GFD. These results highlight OPG as marker for risk of OPN/OP in CeD and suggest that improvement of BMD after GFD is a result of uncoupling between bone metabolism and osteoresorptive action of osteoclasts after GFD.
- MeSH
- bezlepková dieta * MeSH
- celiakie * dietoterapie metabolismus MeSH
- dospělí MeSH
- interleukin-6 * krev metabolismus MeSH
- kostní denzita MeSH
- lidé středního věku MeSH
- lidé MeSH
- osteogeneze MeSH
- osteoklasty metabolismus MeSH
- osteoporóza etiologie metabolismus MeSH
- osteoprotegerin * krev metabolismus MeSH
- prospektivní studie MeSH
- vitamin D krev aplikace a dávkování MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
INTRODUCTION: A critical step preceding the potential biomedical application of nanoparticles is the evaluation of their immunomodulatory effects. Such nanoparticles are expected to enter the bloodstream where they can be recognized and processed by circulating monocytes. Despite the required biocompatibility, this interaction can affect intracellular homeostasis and modulate physiological functions, particularly inflammation. This study focuses on titanium dioxide (TiO2) as an example of relatively low cytotoxic nanoparticles with potential biomedical use and aims to evaluate their possible modulatory effects on the inflammasome-based response in human primary monocytes. METHODS: Monocyte viability, phenotypic changes, and cytokine production were determined after exposure to TiO2 (diameter, 25 nm; P25) alone. In the case of the modulatory effects, we focused on NLRP3 activation. The production of IL-1β and IL-10 was evaluated after (a) simultaneous activation of monocytes with bacterial stimuli muramyl dipeptide (MDP), or lipopolysaccharide (LPS), and TiO2 (co-exposure model), (b) prior activation with TiO2 alone and subsequent exposure to bacterial stimuli MDP or LPS. The differentiation of TiO2-treated monocytes into macrophages and their polarization were also assessed. RESULTS: The selected TiO2 concentration range (30-120 μg/mL) did not induce any significant cytotoxic effects. The highest dose of TiO2 promoted monocyte survival and differentiation into macrophages, with the M2 subset being the most prevalent. Nanoparticles alone did not induce substantial production of inflammatory cytokines IL-1β, IL-6, or TNF-α. The immunomodulatory effect on NLRP3 depended on the type of costimulant used. While co-exposure of monocytes to MDP and TiO2 boosted NLRP3 activity, co-exposure to LPS and TiO2 inhibited NLRP3 by enhancing IL-10 release. The inhibitory effect of TiO2 on NLRP3 based on the promotion of IL-10 was confirmed in a post-exposure model for both costimulants. CONCLUSION: This study confirmed a non-negligible modulatory effect on primary monocytes in their inflammasome-based response and differentiation ability.
- MeSH
- acetylmuramyl-alanyl-isoglutamin farmakologie MeSH
- buněčná diferenciace účinky léků MeSH
- cytokiny metabolismus MeSH
- inflamasomy účinky léků MeSH
- interleukin-10 metabolismus MeSH
- interleukin-1beta metabolismus MeSH
- kovové nanočástice chemie toxicita MeSH
- kultivované buňky MeSH
- lidé MeSH
- lipopolysacharidy * farmakologie MeSH
- makrofágy účinky léků MeSH
- monocyty * účinky léků MeSH
- nanočástice chemie toxicita MeSH
- protein NLRP3 * metabolismus MeSH
- titan * chemie farmakologie toxicita MeSH
- viabilita buněk * účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Tick-borne encephalitis (TBE) is the most common tick-borne viral infection in Eurasia. Outcomes range from asymptomatic infection to fatal encephalitis, with host genetics likely playing a role. BALB/c mice have intermediate susceptibility to TBE virus (TBEV) and STS mice are highly resistant, whereas the recombinant congenic strain CcS-11, which carries 12.5% of the STS genome on the BALB/c background, is more susceptible than BALB/c mice. In the present study, we employed these genetically distinct mouse models to investigate the host response to TBEV infection in both peripheral macrophages, one of the initial target cell populations, and the brain, the terminal target organ of the virus. METHODS: TBEV growth and the production of key cytokines and chemokines were measured and compared in macrophages derived from BALB/c, CcS-11, and STS mice. In addition, brains from these TBEV-infected mouse strains underwent in-depth transcriptomic analysis. RESULTS: Virus production in BALB/c and CcS-11 macrophages exhibited similar kinetics 24 and 48 h post-infection (hpi), but CcS-11 macrophages yielded significantly higher titers 72 hpi. Macrophages from both sensitive strains demonstrated elevated chemokine and proinflammatory cytokine production upon infection, whereas the resistant strain, STS, showed no cytokine/chemokine activation. Transcriptomic analysis of brain tissue demonstrated that the genetic background of the mouse strains dictated their transcriptional response to infection. The resistant strain exhibited a more robust cell-mediated immune response, whereas both sensitive strains showed a less effective cell-mediated response but increased cytokine signaling and signs of demyelination, with loss of oligodendrocytes. CONCLUSIONS: Our findings suggest that variations in susceptibility linked to host genetic background correspond with distinct host responses, both in the periphery upon virus entry into the organism and in the brain, the target organ of the virus. These results provide insights into the influence of host genetics on the clinical trajectory of TBE.
- MeSH
- cytokiny * metabolismus genetika MeSH
- genotyp MeSH
- klíšťová encefalitida * imunologie virologie genetika MeSH
- makrofágy * imunologie virologie MeSH
- mozek * virologie imunologie MeSH
- myši inbrední BALB C * MeSH
- myši MeSH
- viry klíšťové encefalitidy * genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Tick-borne encephalitis virus (TBEV) is flavivirus transmitted to the host via tick saliva which contains various molecules with biological impacts. One of such molecules is Iristatin, a cysteine protease inhibitor from Ixodes ricinus that has been shown to have immunomodulatory properties. To characterize Iristatin in the relation to TBEV, we investigate whether this tick inhibitor has any capacity to influence TBEV infection. Mice were intradermally infected by TBEV with or without Iristatin and the viral multiplication was determined in skin and brain tissues by RT-PCR two and 5 days after infection. The viral RNA was detected in both intervals in skin and increased by time. The application of Iristatin caused a reduction in viral RNA in skin but not in the brain of infected mice 5 days post-infection. Moreover, anti-viral effect of Iristatin on skin was accompanied by a significant decline of interferon-stimulated gene 15 gene expression. The effect of Iristatin on TBEV replication was tested also in vitro in primary macrophages and dendritic cells; however, no changes were observed suggesting no direct interference of Iristatin with virus replication. Still, the Iristatin caused a suppression of Erk1/2 phosphorylation in TBEV-infected dendritic cells and had the anti-apoptotic effect. This is the first report showing that a tick cystatin decreases the viral RNA in the host skin, likely indirectly through creating skin environment that is less supportive for TBEV replication. Assuming, that viral RNA reflects the amount of infectious virus, decline of TBEV in host skin could influence the tick biology or virus transmission during cofeeding.
- MeSH
- antivirové látky farmakologie MeSH
- cystatiny farmakologie metabolismus genetika MeSH
- dendritické buňky virologie účinky léků MeSH
- klíště * virologie účinky léků MeSH
- klíšťová encefalitida * virologie MeSH
- kůže * virologie MeSH
- makrofágy virologie MeSH
- mozek virologie metabolismus MeSH
- myši MeSH
- replikace viru * účinky léků MeSH
- RNA virová genetika MeSH
- slinné cystatiny metabolismus MeSH
- viry klíšťové encefalitidy * účinky léků fyziologie MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Mounting an immune response is a nutritionally demanding process that requires the systemic redistribution of energy stores towards the immune system. This is facilitated by cytokine-induced insulin resistance, which simultaneously promotes the mobilization of lipids and carbohydrates while limiting their consumption in immune-unrelated processes, such as development, growth, and reproduction. However, this adaptation also restricts the availability of nutrients to vital organs, which must then be sustained by alternative fuels. Here, we employed an experimental model of severe bacterial infection in Drosophila melanogaster to investigate whether ketogenesis may represent a metabolic adaptation for overcoming periods of nutritional scarcity during the immune response. We found that the immune response to severe bacterial infection is accompained by increased ketogenesis in the fat body and macrophages, leading to elevated levels of β-hydroxybutyrate in circulation. Although this metabolic adaptation is essential for survival during infection, it is not required for the elimination of the pathogen itself. Instead, ketone bodies predominately serve as an energy source for the brain neurons during this period of nutrient scarcity.
- MeSH
- bakteriální infekce metabolismus imunologie MeSH
- Drosophila melanogaster * metabolismus mikrobiologie MeSH
- energetický metabolismus fyziologie MeSH
- ketolátky * metabolismus MeSH
- kyselina 3-hydroxymáselná metabolismus MeSH
- makrofágy metabolismus MeSH
- mozek * metabolismus MeSH
- neurony metabolismus MeSH
- tukové těleso metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
WBP1L is a broadly expressed transmembrane adaptor protein involved in regulating hematopoietic stem cell function and T cell development. It interacts with NEDD4-family E3 ubiquitin ligases and regulates important chemokine receptor CXCR4. Using tandem affinity purification coupled with mass spectrometry, we identified novel WBP1L interactions with the IFNγ receptor and the Cullin-RING ubiquitin ligases CRL1β-TrCP1/2. We found that WBP1L interaction with the IFNγ receptor serves to downregulate proximal IFNγ receptor signaling in female macrophages, while the interaction with CRL1β-TrCP1/2 ubiquitin ligases regulates WBP1L protein levels. Disrupting this interaction, as well as inhibiting proteasome activity or neddylation, increased WBP1L protein levels, demonstrating that CRL1β-TrCP1/2 ubiquitin ligases regulate WBP1L protein abundance. These data provide important insights into the mechanisms controlling WBP1L function.
- MeSH
- adaptorové proteiny signální transdukční metabolismus MeSH
- HEK293 buňky MeSH
- hematopoéza * MeSH
- lidé MeSH
- makrofágy metabolismus MeSH
- membránové proteiny metabolismus MeSH
- myši MeSH
- proteiny s repetitivními sekvencemi beta-transducinu metabolismus MeSH
- signální transdukce MeSH
- ubikvitinligasy * metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Synovial fluid (SF)-derived monocyte-macrophage (MON-Mφ)-lineage cells in knee osteoarthritis (KOA) remain poorly understood. We analyzed SF samples from 420 patients with KOA with effusion. The MON-Mφ cells accounted for 47.4% (median; range 7.1%-94.4%) of CD45+ cells and consisted of four subpopulations that correlated with the distribution and activation of other immune cells. The most abundant subpopulation was that of inactive CD11b+CD14-CD16- myeloid dendritic cells (mDCs; cDC2), which exhibited low cytokine production, low T lymphocyte stimulation, and high migratory ability. Other major subpopulations included CD11b+CD14+CD16- monocyte-like cells and CD11b+CD14+CD16+ macrophages, which share a similar transcriptomic profile. A subpopulation of CD11b-CD14-CD16- mDCs (cDC1) was less common. A higher proportion of CD11b+CD14-CD16- mDCs was linked to early-stage KOA and mild joint pain. Dendritic cells were rarely present in KOA synovium. This study revealed the considerable complexity of SF-derived MON-Mφ subpopulations and highlighted the role of inactive mDCs in KOA.
- MeSH
- artróza kolenních kloubů * patologie metabolismus imunologie MeSH
- buněčný rodokmen MeSH
- dendritické buňky * metabolismus imunologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- makrofágy * metabolismus imunologie MeSH
- monocyty * metabolismus imunologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- synoviální tekutina * metabolismus imunologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Linoleic acid (LA), an essential fatty acid, has emerged as a pivotal regulator in disorders associated with inflammation in recent years; however, the underlying mechanisms are still not completely understood. We utilized network pharmacology and experimental methodologies to elucidate the mechanisms underlying the anti-inflammatory effects of LA. Our network pharmacology analysis revealed that LA shares common targets with sepsis. These targets are enriched in various pathways comprising C-type signaling pathway, PI3K-Akt signaling pathway, toll-like receptor signaling pathway, neutrophil extracellular trap formation, AMPK signaling pathway, and autophagy-animal. These findings suggest that LA may exert regulatory effects on inflammation and autophagy during sepsis. Subsequently, we established in vivo and ex vivo models of sepsis using lipopolysaccharide (LPS) in experimental study. Treatment with LA reduced lung damage in mice with LPS-induced lung injury, and reduced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in plasma, bronchoalveolar lavage fluid (BALF), and peritoneal lavage fluid (PLF). LA also decreased the production of TNF-α and IL-6 in RAW264.7 macrophages exposed to LPS. In LPS-induced RAW264.7 macrophages, LA induced an elevation in LC3-II while causing a reduction in p62, which was associated with downregulation of toll-like receptor 4 (TLR4). We utilized 3-methyladenine (3-MA) to inhibit the autophagic activity, which reversed the modulatory effects of LA on LC3-II and p62. 3-MA also prevented the decline in TLR4 expression along with reduction in pro-inflammatory cytokines secretion. Our findings suggest that the activation of autophagy by LA may lead to the downregulation of TLR4, thereby exerting its anti-inflammatory effects.
- MeSH
- autofagie * účinky léků MeSH
- kyselina linolová * farmakologie MeSH
- lipopolysacharidy * toxicita MeSH
- makrofágy * účinky léků metabolismus imunologie MeSH
- myši MeSH
- RAW 264.7 buňky MeSH
- sepse chemicky indukované farmakoterapie metabolismus imunologie MeSH
- signální transdukce účinky léků MeSH
- toll-like receptor 4 * metabolismus MeSH
- zánět * metabolismus farmakoterapie chemicky indukované patologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH