228 s. : il.
Většinu eukaryotického genomu představují DNA sekvence, které nekódují proteiny. Tyto sekvence jsou přepisovány buď podle vývojového programu daného organizmu nebo v rámci odpovědi na vnější signály. Výsledkem transkripce takových sekvencí je pak velké množství dlouhých nekódujících RNA (lncRNA). Celogenomové studie předpokládají existenci více než 3 300 lncRNA. Dlouhé nekódující RNA jsou definovány jako molekuly nekódujících RNA o délce více než 200 nukleotidů. Vzhledem k vysoké míře komplexnosti a rozmanitosti těchto sekvencí byl nárůst poznání v této oblasti relativně pomalý. Ačkoli bylo dosud funkčně charakterizováno pouze omezené množství lncRNA, jejich regulační potenciál je již dnes evidentní. LncRNA hrají klíčové role jak v transkripčních, tak v post-transkripčních regulačních drahách. U mnoha nádorových onemocnění dochází k deregulaci lncRNA, což společně s jejich funkčními vlastnostmi naznačuje jejich významný potenciál v procesech maligní transformace. Tento přehledový článek je zaměřen na shrnutí nedávno objevených skupin lncRNA, popis jejich biologických funkcí a zejména na jejich význam v nádorové biologii a translačním onkologickém výzkumu.
A major portion of the eukaryotic genome is occupied by DNA sequences; transcripts of these sequences do not code for proteins. This part of the eukaryotic genome is transcribed in a developmentally regulated manner or as a response to external stimuli to produce large numbers of long non-coding RNAs (lncRNAs). Genome-wide studies indicate the existence of more than 3,300 lncRNAs. Long non-coding RNAs are tentatively defined as molecules of ncRNAs that are more than two hundred nucleotides long. Due to the complexity and diversity of their sequences, progress in the field of lncRNAs has been very slow. Nonetheless, lncRNAs have emerged as key molecules involved in the control of transcriptional and posttranscriptional gene regulatory pathways. Although limited numbers of functional lncRNAs have been identified so far, the immense regulatory potential of lncRNAs is already evident, emphasizing that a genome-wide characterization of functional lncRNAs is needed. The fact that many lncRNAs are deregulated in various human cancers, together with their functional characteristics, implies their eminent role in carcinogenesis. In this review, we summarize novel classes of lncRNAs, describe their biological functions emphasizing their roles in tumor biology and translational oncology research.
- Keywords
- lincRNA, T-UC,
- MeSH
- 3' Untranslated Regions physiology genetics immunology MeSH
- 5' Untranslated Regions physiology genetics immunology MeSH
- Financing, Organized MeSH
- Genetic Markers genetics MeSH
- Genetic Structures MeSH
- Genome, Human physiology genetics immunology MeSH
- Carcinoma, Hepatocellular diagnosis genetics MeSH
- Humans MeSH
- RNA, Small Untranslated genetics isolation & purification MeSH
- MicroRNAs genetics isolation & purification MeSH
- Prostatic Neoplasms diagnosis genetics MeSH
- Breast Neoplasms diagnosis genetics MeSH
- Neoplasms diagnosis etiology genetics MeSH
- RNA, Untranslated diagnostic use genetics isolation & purification MeSH
- Untranslated Regions physiology genetics immunology MeSH
- Telomere-Binding Proteins genetics MeSH
- Pseudogenes physiology genetics immunology MeSH
- Translational Research, Biomedical methods trends MeSH
- Check Tag
- Humans MeSH
- Publication type
- Review MeSH
[1st ed.] nestr. ; 30 cm
- MeSH
- Neural Networks, Computer MeSH
- Publication type
- Congress MeSH
- Conspectus
- Patologie. Klinická medicína
- NML Fields
- neurovědy
[1st ed.] 63 s. ; 26 cm
- MeSH
- Cybernetics MeSH
- Models, Neurological MeSH
- Neuroma physiology MeSH
- Neural Networks, Computer MeSH
- Publication type
- Abstracts MeSH
- Congress MeSH
- Conspectus
- Knihovnictví. Informatika
- NML Fields
- knihovnictví, informační věda a muzeologie
- neurovědy
Cells must change their properties in order to adapt to a constantly changing environment. Most of the cellular sensing and regulatory mechanisms described so far are based on proteins that serve as sensors, signal transducers, and effectors of signalling pathways, resulting in altered cell physiology. In recent years, however, remarkable examples of the critical role of non-coding RNAs in some of these regulatory pathways have been described in various organisms. In this review, we focus on all classes of non-coding RNAs that play regulatory roles during stress response, starvation, and ageing in different yeast species as well as in structured yeast populations. Such regulation can occur, for example, by modulating the amount and functional state of tRNAs, rRNAs, or snRNAs that are directly involved in the processes of translation and splicing. In addition, long non-coding RNAs and microRNA-like molecules are bona fide regulators of the expression of their target genes. Non-coding RNAs thus represent an additional level of cellular regulation that is gradually being uncovered.
- MeSH
- MicroRNAs * genetics MeSH
- RNA, Long Noncoding * genetics MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
1 online zdroj
- MeSH
- RNA, Untranslated * MeSH
- Publication type
- Periodical MeSH
- Conspectus
- Chemie. Mineralogické vědy
- NML Fields
- chemie, klinická chemie
- genetika, lékařská genetika
The interactions between mitochondria and nucleus substantially influence plant development, stress response and morphological features. The prominent example of a mitochondrial-nuclear interaction is cytoplasmic male sterility (CMS), when plants produce aborted anthers or inviable pollen. The genes responsible for CMS are located in mitochondrial genome, but their expression is controlled by nuclear genes, called fertility restorers. Recent explosion of high-throughput sequencing methods enabled to study transcriptomic alterations in the level of non-coding RNAs under CMS biogenesis. We summarize current knowledge of the role of nucleus encoded regulatory non-coding RNAs (long non-coding RNA, microRNA as well as small interfering RNA) in CMS. We also focus on the emerging data of non-coding RNAs encoded by mitochondrial genome and their possible involvement in mitochondrial-nuclear interactions and CMS development.
A colorectal adenoma, an aberrantly growing tissue, arises from the intestinal epithelium and is considered as precursor of colorectal cancer (CRC). In this study, we investigated structural and numerical chromosomal aberrations in adenomas, hypothesizing that chromosomal instability (CIN) occurs early in adenomas. We applied array comparative genomic hybridization (aCGH) to fresh frozen colorectal adenomas and their adjacent mucosa from 16 patients who underwent colonoscopy examination. In our study, histologically similar colorectal adenomas showed wide variability in chromosomal instability. Based on the obtained results, we further stratified patients into four distinct groups. The first group showed the gain of MALAT1 and TALAM1, long non-coding RNAs (lncRNAs). The second group involved patients with numerous microdeletions. The third group consisted of patients with a disrupted karyotype. The fourth group of patients did not show any CIN in adenomas. Overall, we identified frequent losses in genes, such as TSC2, COL1A1, NOTCH1, MIR4673, and GNAS, and gene gain containing MALAT1 and TALAM1. Since long non-coding RNA MALAT1 is associated with cancer cell metastasis and migration, its gene amplification represents an important event for adenoma development.
- MeSH
- Adenoma * genetics pathology MeSH
- Chromosomal Instability MeSH
- Colorectal Neoplasms * genetics pathology MeSH
- Humans MeSH
- Precancerous Conditions * genetics pathology MeSH
- RNA, Long Noncoding * genetics MeSH
- Comparative Genomic Hybridization MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH