Wiley series in mathematical and computational biology
1st ed. ix, 286 s.
elektronický časopis
Úvod: Charakter nosního proudění je zásadní pro bezproblémové nosní dýchání, stejně jako může být patofyziologickým podkladem symptomů nosních onemocnění (nosní neprůchodnost, sekrece, tvorba krust aj.). Je obtížné definovat jeden fyziologický charakter proudění, protože subjektivní potíže nemocných často nejsou v korelaci s objektivním nálezem. Pozornost je proto věnována studiu nosní aerodynamiky, pro které je v současnosti nejvíce využíváno počítačové modelování proudění, tzv. computational fluid dynamics (CFD). Metodika: Pro simulaci nosního proudění byl ve spolupráci s Vysokou školou báňskou (VŠB) vytvořen 3D model dle CT vyšetření nosní dutiny pacientky, která neměla potíže s nosním dýcháním ("fyziologická" nosní dutina). Výsledky: Dle získaných výsledků se liší proudění vzduchu v pravé a levé nosní dutině. Hlavní proud vzduchu lze pozorovat jak v dolním a dolní části společného průduchu, tak i ve středním a střední části společného průduchu. První výsledky se shodují se studiemi uvádějícími značné rozdíly v nosní aerodynamice mezi zdravými jedinci. Závěr: Počítačové modelování proudění vzduchu má potenciál být využíváno v klinické praxi, především ve funkční rinochirurgii.
Introduction: The pattern of the nasal airflow is crucial for normal nasal breathing as well as it can be a pathophysiological underlay of nasal symptoms (nasal obstruction, crusting etc). It is difficult to define one physiological airflow pattern because subjective symptoms of patients do not correlate with objective findings quite often. Nowadays, the computational fluid dynamics (CFD) is dominant way how to simulate and study nasal airflow. Methods: For nasal airflow simulation 3D model of nasal cavity was created according to CT scans of nasal cavity (patient had no problems with nasal breathing). The 3D model was created with the cooperation with Technical University of Ostrava. Results: Our first experience with CFD showed that there is a different airflow pattern between right and left nasal cavity. Major part of airflow was detected in inferior and inferior part of common meatus and also in the middle and in the middle part of common nasal meatus. These results support studies that declare differences in nasal aerodynamics among healthy adults. Conclusion: CFD has a potential to be used in clinical practice especially in functional rhinosurgery.
- Keywords
- nosní proudění,
- MeSH
- Convection MeSH
- Humans MeSH
- Nose * physiology MeSH
- Computer Simulation * MeSH
- Imaging, Three-Dimensional MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
x, 284 s. : il., tab. ; 25 cm
- MeSH
- Mass Spectrometry methods MeSH
- Proteomics methods MeSH
- Computational Biology MeSH
- Publication type
- Monograph MeSH
- Conspectus
- Biochemie. Molekulární biologie. Biofyzika
- NML Fields
- biochemie
- MeSH
- Humans MeSH
- Computers utilization MeSH
- Sports MeSH
- Heart Rate MeSH
- Exercise Test MeSH
- Check Tag
- Humans MeSH
Protein engineering strategies aimed at constructing enzymes with novel or improved activities, specificities, and stabilities greatly benefit from in silico methods. Computational methods can be principally grouped into three main categories: bioinformatics; molecular modelling; and de novo design. Particularly de novo protein design is experiencing rapid development, resulting in more robust and reliable predictions. A recent trend in the field is to combine several computational approaches in an interactive manner and to complement them with structural analysis and directed evolution. A detailed investigation of designed catalysts provides valuable information on the structural basis of molecular recognition, biochemical catalysis, and natural protein evolution.
- MeSH
- Enzymes genetics MeSH
- Humans MeSH
- Models, Molecular MeSH
- Mutation MeSH
- Protein Engineering methods MeSH
- Enzyme Stability MeSH
- Computational Biology methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
There is great interest in increasing proteins' stability to enhance their utility as biocatalysts, therapeutics, diagnostics and nanomaterials. Directed evolution is a powerful, but experimentally strenuous approach. Computational methods offer attractive alternatives. However, due to the limited reliability of predictions and potentially antagonistic effects of substitutions, only single-point mutations are usually predicted in silico, experimentally verified and then recombined in multiple-point mutants. Thus, substantial screening is still required. Here we present FireProt, a robust computational strategy for predicting highly stable multiple-point mutants that combines energy- and evolution-based approaches with smart filtering to identify additive stabilizing mutations. FireProt's reliability and applicability was demonstrated by validating its predictions against 656 mutations from the ProTherm database. We demonstrate that thermostability of the model enzymes haloalkane dehalogenase DhaA and γ-hexachlorocyclohexane dehydrochlorinase LinA can be substantially increased (ΔTm = 24°C and 21°C) by constructing and characterizing only a handful of multiple-point mutants. FireProt can be applied to any protein for which a tertiary structure and homologous sequences are available, and will facilitate the rapid development of robust proteins for biomedical and biotechnological applications.
- MeSH
- Point Mutation genetics physiology MeSH
- Databases, Genetic MeSH
- Lyases chemistry genetics metabolism MeSH
- Models, Molecular MeSH
- Computer Simulation MeSH
- Protein Engineering methods MeSH
- Enzyme Stability genetics MeSH
- Temperature MeSH
- Computational Biology methods MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH