Cancer immunotherapy is increasingly used in clinical practice, but its success rate is reduced by tumor escape from the immune system. This may be due to the genetic instability of tumor cells, which allows them to adapt to the immune response and leads to intratumoral immune heterogeneity. The study investigated spatial immune heterogeneity in the tumor microenvironment and its possible drivers in a mouse model of tumors induced by human papillomaviruses (HPV) following immunotherapy. Gene expression was determined by RNA sequencing and mutations by whole exome sequencing. A comparison of different tumor areas revealed heterogeneity in immune cell infiltration, gene expression, and mutation composition. While the mean numbers of mutations with every impact on gene expression or protein function were comparable in treated and control tumors, mutations with high or moderate impact were increased after immunotherapy. The genes mutated in treated tumors were significantly enriched in genes associated with ECM metabolism, degradation, and interactions, HPV infection and carcinogenesis, and immune processes such as antigen processing and presentation, Toll-like receptor signaling, and cytokine production. Gene expression analysis of DNA damage and repair factors revealed that immunotherapy upregulated Apobec1 and Apobec3 genes and downregulated genes related to homologous recombination and translesion synthesis. In conclusion, this study describes the intratumoral immune heterogeneity, that could lead to tumor immune escape, and suggests the potential mechanisms involved.
- MeSH
- Immunotherapy * methods MeSH
- Papillomavirus Infections immunology virology MeSH
- Humans MeSH
- Disease Models, Animal * MeSH
- Mutation * MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Tumor Microenvironment * immunology MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Exome Sequencing MeSH
- Tumor Escape genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Berberine (BBR), a small molecule protoberberine isoquinoline alkaloid, is easy to cross the blood-brain barrier and is a potential drug for neurodegenerative diseases. Here, we explored the role and molecular mechanism of BBR in Alzheimer's disease (AD) progression. Weighted gene co-expression network analysis (WGCNA) was conducted to determine AD pathology-associated gene modules and differentially expressed genes (DEGs) were also identified. GO and KEGG analyses were performed for gene function and signaling pathway annotation. Cell counting kit-8 (CCK8) assay was applied to analyze cell viability. Immunofluorescence (IF) staining assay was conducted to measure the levels of polarization markers. The production of inflammatory cytokines was analyzed by enzyme-linked immunosorbent assay (ELISA). Reactive oxygen species (ROS) level and mitochondrial membrane potential (MMP) were detected using a ROS detection kit and a MMP Detection Kit (JC-1), respectively. AD pathology-associated DEGs were applied for GO function annotation and KEGG enrichment analysis, and the results uncovered that AD pathology was related to immune and inflammation. Lipopolysaccharide (LPS) exposure induced the M1 phenotype of microglia, and BBR suppressed LPS-induced M1 polarization and induced microglia toward M2 polarization. Through co-culture of microglia and neuronal cells, we found that BBR exerted a neuro-protective role by attenuating the injury of LPS-induced HMC3 on SH-SY5Y cells. Mechanically, BBR switched the M1/M2 phenotypes of microglia by activating PI3K-AKT signaling. In summary, BBR protected neuronal cells from activated microglia-mediated neuro-inflammation by switching the M1/M2 polarization in LPS-induced microglia via activating PI3K-AKT signaling. Key words Alzheimer's Disease, Berberine, Microglia polarization, Neuroinflammation, PI3K-AKT signaling.
- MeSH
- Alzheimer Disease * metabolism drug therapy pathology MeSH
- Berberine * pharmacology therapeutic use MeSH
- Phosphatidylinositol 3-Kinases * metabolism MeSH
- Humans MeSH
- Microglia * drug effects metabolism MeSH
- Mice MeSH
- Neuroprotective Agents * pharmacology MeSH
- Cell Polarity drug effects MeSH
- Proto-Oncogene Proteins c-akt * metabolism MeSH
- Signal Transduction * drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
AIMS: This study aimed to examine changes in the repertoire of functional T-cells specific for six leukemia-associated antigens (LAA), including WT1, PRAME, MUC1, CCNA1, NPM1, and NPM1c, during immune reconstitution following allogeneic transplantation of hematopoietic stem cells (HSCT) in patients with acute myeloid leukemia. PATIENTS & METHODS: LAA-specific T cell response was measured by ELISPOT- IFNγ and intracellular cytokine staining in 47 patients before starting conditioning therapy (baseline) and 7 months after HSCT. RESULTS: The positive cumulative LAA-specific T cell response before HSCT was associated with a decreased risk of relapse after HSCT. The prevalent genetic aberration - an internal tandem duplication of Fms 3 - related receptor tyrosine kinase, which has been previously implicated in immune escape mechanisms, is presented here for the first time as a factor associated with the absence of an adaptive T cell response against multiple LAAs. T-cell specific responses against wild-type and mutated NPM1 antigens were less frequent in the study cohort and did not correlate with mutations in the NPM1 gene. CONCLUSIONS: Our results showed that the T-cell response to LAA can be reconstituted after HSCT. Measurement of functional pre-transplant T-cell responses against multiple LAAs could help to find patients with an increased risk of relapse.
- MeSH
- Leukemia, Myeloid, Acute * therapy immunology genetics MeSH
- Antigens, Neoplasm immunology MeSH
- Adult MeSH
- Transplantation, Homologous MeSH
- Nuclear Proteins genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Mucin-1 genetics immunology MeSH
- Mutation * MeSH
- Nucleophosmin * MeSH
- WT1 Proteins immunology genetics MeSH
- Recurrence MeSH
- Aged MeSH
- T-Lymphocytes * immunology MeSH
- Hematopoietic Stem Cell Transplantation * MeSH
- fms-Like Tyrosine Kinase 3 * genetics MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
DNA damage is a common event in cells, resulting from both internal and external factors. The maintenance of genomic integrity is vital for cellular function and physiological processes. The inadequate repair of DNA damage results in the genomic instability, which has been associated with the development and progression of various human diseases. Accumulation of DNA damage can lead to multiple diseases, such as neurodegenerative disorders, cancers, immune deficiencies, infertility, and ageing. This comprehensive review delves the impact of alterations in DNA damage response genes (DDR) and tries to elucidate how and to what extent the same traits modulate diverse major human diseases, such as cancer, neurodegenerative diseases, and immunological disorders. DDR is apparently the trait connecting important complex disorders in humans. However, the pathogenesis of the above disorders and diseases are different and lead to divergent consequences. It is important to discover the switch(es) that direct further the pathogenic process either to proliferative, or degenerative diseases. Our understanding of the influence of DNA damage on diverse human disorders may enable the development of the strategies to prevent, diagnose, and treat these diseases. In our article, we analysed publicly available GWAS summary statistics from the NHGRI-EBI GWAS Catalog and identified 12 009 single-nucleotide polymorphisms (SNPs) associated with cancer. Among these, 119 SNPs were found in DDR pathways, exhibiting significant P-values. Additionally, we identified 44 SNPs linked to various cancer types and neurodegenerative diseases (NDDs), including four located in DDR-related genes: ATM, CUX2, and WNT3. Furthermore, 402 SNPs were associated with both cancer and immunological disorders, with two found in the DDR gene RAD51B. This highlights the versatility of the DDR pathway in multifactorial diseases. However, the specific mechanisms that regulate DDR to initiate distinct pathogenic processes remain to be elucidated.
- MeSH
- Genome-Wide Association Study MeSH
- Genetic Predisposition to Disease MeSH
- Polymorphism, Single Nucleotide MeSH
- Humans MeSH
- Neoplasms * genetics MeSH
- Immune System Diseases * genetics MeSH
- Genomic Instability genetics MeSH
- Neurodegenerative Diseases * genetics MeSH
- DNA Repair * genetics MeSH
- DNA Damage * genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Massive bleeding causes approximately 50% of deaths in patients with major trauma. Most patients die within 6 h of injury, which is preventable in at least 10% of cases. For these patients, early activation of the massive transfusion protocol (MTP) is a critical survival factor. With severe trauma, high-mobility group box 1 (HMGB-1, i.e., amphoterin) is released into the blood, and its levels correlate with the development of a systemic inflammatory response, traumatic coagulopathy, and fibrinolysis. Previous work has shown that higher levels of HMGB-1 are associated with a higher use of red blood cell transfusions. We conducted a retrospective analysis of previous prospective single-center study to assess the value of admission HMGB-1 levels in predicting activation of MTP in the emergency department. From July 11, 2019, to April 23, 2022, a total of 104 consecutive adult patients with severe trauma (injury severity score > 16) were enrolled. A blood sample was taken at admission, and HMGB-1 was measured. MTP activation in the emergency department was recorded in the study documentation. The total amount of blood products and fibrinogen administered to patients within 6 h of admission was monitored. Among those patients with massive bleeding requiring MTP activation, we found significantly higher levels of HMGB-1 compared to patients without MTP activation (median [interquartile range]: 84.3 μg/L [34.2-145.9] vs. 21.1 μg/L [15.7-30.4]; p < 0.001). HMGB-1 level showed good performance in predicting MTP activation, with an area under the receiver operating characteristic curve of 0.84 (95% CI 0.75-0.93) and a cut-off value of 30.55 μg/L. HMGB-1 levels correlated significantly with the number of red blood cell units (rs [95% CI] 0.46 [0.28-0.61]; p < 0.001), units of fresh frozen plasma (rs 0.46 [0.27-0.61]; p < 0.001), platelets (rs 0.48 [0.30-0.62]; p < 0.001), and fibrinogen (rs 0.48 [0.32-0.62]; p < 0.001) administered in the first 6 h after hospital admission. Admission HMGB-1 levels reliably predict severe bleeding requiring MTP activation in the emergency department and correlate with the amount of blood products and fibrinogen administered during the first 6 h of hemorrhagic shock resuscitation.Trial registration: NCT03986736. Registration date: June 4, 2019.
- MeSH
- Biomarkers blood MeSH
- Adult MeSH
- Blood Transfusion * methods MeSH
- Hemorrhage * blood therapy etiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Prospective Studies MeSH
- HMGB1 Protein * blood MeSH
- Wounds and Injuries * blood therapy complications MeSH
- Retrospective Studies MeSH
- Aged MeSH
- Injury Severity Score MeSH
- Emergency Service, Hospital MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Cellular senescence precipitates a decline in physiological activities and metabolic functions, often accompanied by heightened inflammatory responses, diminished immune function, and impaired tissue and organ performance. Despite extensive research, the mechanisms underpinning cellular senescence remain incompletely elucidated. Emerging evidence implicates circadian rhythm and hypoxia as pivotal factors in cellular senescence. Circadian proteins are central to the molecular mechanism governing circadian rhythm, which regulates homeostasis throughout the body. These proteins mediate responses to hypoxic stress and influence the progression of cellular senescence, with protein Brain and muscle arnt-like 1 (BMAL1 or Arntl) playing a prominent role. Hypoxia-inducible factor-1α (HIF-1α), a key regulator of oxygen homeostasis within the cellular microenvironment, orchestrates the transcription of genes involved in various physiological processes. HIF-1α not only impacts normal circadian rhythm functions but also can induce or inhibit cellular senescence. Notably, HIF-1α may aberrantly interact with BMAL1, forming the HIF-1α-BMAL1 heterodimer, which can instigate multiple physiological dysfunctions. This heterodimer is hypothesized to modulate cellular senescence by affecting the molecular mechanism of circadian rhythm and hypoxia signaling pathways. In this review, we elucidate the intricate relationships among circadian rhythm, hypoxia, and cellular senescence. We synthesize diverse evidence to discuss their underlying mechanisms and identify novel therapeutic targets to address cellular senescence. Additionally, we discuss current challenges and suggest potential directions for future research. This work aims to deepen our understanding of the interplay between circadian rhythm, hypoxia, and cellular senescence, ultimately facilitating the development of therapeutic strategies for aging and related diseases.
- MeSH
- Molecular Targeted Therapy MeSH
- Circadian Rhythm * physiology MeSH
- Hypoxia-Inducible Factor 1, alpha Subunit metabolism MeSH
- Cell Hypoxia MeSH
- Hypoxia metabolism physiopathology MeSH
- Humans MeSH
- Signal Transduction MeSH
- Cellular Senescence * MeSH
- ARNTL Transcription Factors metabolism genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
While the immunomodulation effects of per- and polyfluoroalkyl substances (PFASs) are described on the level of clinical signs in epidemiological studies (e.g., suppressed antibody response after vaccination), the underlying mechanism has still not been fully elucidated. To reveal mechanisms of PFAS exposure on immunity, we investigated the genome-wide transcriptomic changes of peripheral blood mononuclear cells (PBMCs) responding to PFAS exposure (specifically, exposure to PFPA, PFOA, PFNA, PFDA, PFUnDA, PFHxS, and PFOS). Blood samples and the chemical load in the blood were analyzed under the cross-sectional CELSPAC: Young Adults study. The overall aim of the study was to identify sensitive gene sets and cellular pathways conserved for multiple PFAS chemicals. Transcriptome networks related to adaptive immunity were perturbed by multiple PFAS exposure (i.e., blood levels of at least four PFASs). Specifically, processes tightly connected with late B cell development, such as B cell receptor signaling, germinal center reactions, and plasma cell development, were shown to be affected. Our comprehensive transcriptome analysis identified the disruption of B cell development, specifically the impact on the maturation of antibody-secreting cells, as a potential mechanism underlying PFAS immunotoxicity.
- MeSH
- Fluorocarbons * toxicity MeSH
- Alkanesulfonic Acids * MeSH
- Environmental Pollutants * MeSH
- Leukocytes, Mononuclear MeSH
- Humans MeSH
- Young Adult MeSH
- Cross-Sectional Studies MeSH
- Transcriptome MeSH
- Check Tag
- Humans MeSH
- Young Adult MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
Biological mechanisms related to cancer development can leave distinct molecular fingerprints in tumours. By leveraging multi-omics and epidemiological information, we can unveil relationships between carcinogenesis processes that would otherwise remain hidden. Our integrative analysis of DNA methylome, transcriptome, and somatic mutation profiles of kidney tumours linked ageing, epithelial-mesenchymal transition (EMT), and xenobiotic metabolism to kidney carcinogenesis. Ageing process was represented by associations with cellular mitotic clocks such as epiTOC2, SBS1, telomere length, and PBRM1 and SETD2 mutations, which ticked faster as tumours progressed. We identified a relationship between BAP1 driver mutations and the epigenetic upregulation of EMT genes (IL20RB and WT1), correlating with increased tumour immune infiltration, advanced stage, and poorer patient survival. We also observed an interaction between epigenetic silencing of the xenobiotic metabolism gene GSTP1 and tobacco use, suggesting a link to genotoxic effects and impaired xenobiotic metabolism. Our pan-cancer analysis showed these relationships in other tumour types. Our study enhances the understanding of kidney carcinogenesis and its relation to risk factors and progression, with implications for other tumour types.
- MeSH
- DNA-Binding Proteins genetics metabolism MeSH
- Epigenesis, Genetic MeSH
- Epithelial-Mesenchymal Transition * genetics MeSH
- Glutathione S-Transferase pi genetics metabolism MeSH
- Histone-Lysine N-Methyltransferase genetics metabolism MeSH
- Carcinogenesis * genetics MeSH
- Humans MeSH
- DNA Methylation * MeSH
- Multiomics MeSH
- Mutation * MeSH
- Tumor Suppressor Proteins genetics metabolism MeSH
- Kidney Neoplasms * genetics pathology MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Aging genetics MeSH
- Ubiquitin Thiolesterase MeSH
- Transcription Factors genetics metabolism MeSH
- Transcriptome MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Bone nonunion delays fracture end repair and is associated with inflammation. Although bone nonunion can be effectively repaired in clinical practice, many cases of failure. Studies have confirmed that BMP-2 and nHA/PA66 repaired bone defects successfully. There are few studies on the effects of the combined application of BMP-2 and NHA/PA66 on bone nonunion osteogenesis and inflammation. We aimed to investigate the expression level of inflammation-related genes in patients with bone nonunion and the effect of BMP-2-infected mesenchymal stem cells combined with nHA/PA66 on the level of inflammation in femur nonunion rats. We searched for a gene expression profile related to bone nonunion inflammation (GSE93138) in the GEO public database. Bone marrow mesenchymal stem cells (MSCs) of SD rats were cultured and passed through. We infected the third generation of MSCs with lentivirus carrying BMP-2 and induced the infected MSCs to bone orientation. We detected the expression level of BMP-2 by RT-PCR and the cell viability and alkaline phosphatase (ALP) activity by CCK8 and then analyzed the cell adhesion ability. Finally, the levels of related inflammatory factors, including C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-alpha) and Erythrocyte Sedimentation Rate (ESR), were detected in nonunion rats. Our findings: The patients with nonunion had up-regulated expression of 26 differentially inflammatory genes. These genes are mainly enriched in innate immune response, extracellular region, calcium ion binding, Pantothenate and CoA biosynthesis pathways. The expression level of BMP-2 in the Lenti-BMP-2 group was higher (vs. empty lentivirus vector group: t=5.699; vs. uninfected group t=3.996). The cell activity of the MSCs + BMP-2 + nHA/PA66 group increased gradually. After being combined with nHA/PA66, MSCs transfected with BMP-2 spread all over the surface of nHA/PA66 and grew into the material pores. MSCs + BMP-2 + nHA/PA66 cells showed positive ALP staining, and the OD value of ALP was the highest. The levels of CRP, IL-6, TNF-alpha, and ESR in the MSCs + BMP-2 + nHA/PA66 group were lower than those in the MSCs and MSCs + nHA/PA66 group but higher than those in MSCs + BMP-2 group. The above comparisons were all P<0.05. The findings demonstrated that the expression level of inflammation-related genes increased in the patients with bone nonunion. The infection of MSCs by BMP-2 could promote the directed differentiation of MSCs into osteoblasts in the bone marrow of rats, enhance the cell adhesion ability and ALP activity, and reduce inflammation in rats with bone nonunion.
- MeSH
- Adult MeSH
- Femur metabolism pathology MeSH
- Femoral Fractures metabolism genetics MeSH
- Bone Morphogenetic Protein 2 * metabolism genetics MeSH
- Rats MeSH
- Cells, Cultured MeSH
- Middle Aged MeSH
- Humans MeSH
- Mesenchymal Stem Cells * metabolism MeSH
- Fractures, Ununited * genetics metabolism MeSH
- Osteogenesis MeSH
- Rats, Sprague-Dawley * MeSH
- Mesenchymal Stem Cell Transplantation * MeSH
- Inflammation * metabolism genetics MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Rats MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
... 135 -- Acute myeloid leukaemia with CEBPA mutation 138 -- Acute myeloid leukaemia, myelodysplasia-related ... ... -- Myeloid/lymphoid neoplasms -- Myeloid/lymphoid neoplasms with eosinophilia and tyrosine kinase gene ... ... lymphoid neoplasm with ETV6::ABL1 fusion 199 -- Myeloid/lymphoid neoplasms with other tyrosine kinase gene ... ... Introduction 305 -- Reactive B-cell-rich lymphoid proliferations that can mimic lymphoma 309 lgG4-related ... ... -- EBV-positive mucocutaneous ulcer -- Lymphomas arising in immune deficiency/dysregulation born error ...
Fifth edition 2 svazky (celkem 958 stran) : ilustrace