mitochondria dysfunction
Dotaz
Zobrazit nápovědu
Testicular cancer is the most common form of cancer in young men of reproductive age and its incidence is increasing globally. With the currently successful treatment and 95% survival rate, there is a need for deeper understanding of testicular cancer-related infertility. Most patients with testicular cancer experience semen abnormalities prior to cancer therapy. However, the exact mechanism of the effect of testicular cancer on sperm anomalies is not known. Mitochondria are organelles that play a crucial role in both tumorigenesis and spermatogenesis and their malfunction may be an important factor resulting in sperm abnormalities in testicular cancer patients. Within the scope of this review, we will discuss current knowledge of testicular cancer-related alterations in the ATP production pathway, a possible pathophysiological switch from oxidative phosphorylation (OXPHOS) to glycolysis, as well as the role of oxidative stress promoting sperm dysfunction. In this regard, the review provides a summary of the impact of testicular cancer on sperm quality as a possible consequence of impaired mitochondrial function including the energy metabolic pathways that are known to be altered in the sperm of testicular cancer patients.
Two basic types of cancers were identified – those with the mitochondrial dysfunction in cancer cells (the Warburg effect) or in fibroblasts supplying energy rich metabolites to a cancer cell with functional mitochondria (the reverse Warburg effect). Inner membrane potential of the functional and dysfunctional mitochondria measured by fluorescent dyes (e.g. by Rhodamine 123) displays low and high values (apparent potential), respectively, which is in contrast to the level of oxidative metabolism. Mitochondrial dysfunction (full function) results in reduced (high) oxidative metabolism, low (high) real membrane potential, a simple layer (two layers) of transported protons around mitochondria, and high (low) damping of microtubule electric polar vibrations. Crucial modifications are caused by ordered water layer (exclusion zone). For the high oxidative metabolism one proton layer is at the mitochondrial membrane and the other at the outer rim of the ordered water layer. High and low damping of electric polar vibrations results in decreased and increased electromagnetic activity in cancer cells with the normal and the reverse Warburg effect, respectively. Due to nonlinear properties the electromagnetic frequency spectra of cancer cells and transformed fibroblasts are shifted in directions corresponding to their power deviations resulting in disturbances of interactions and escape from tissue control. The cancer cells and fibroblasts of the reverse Warburg effect tumors display frequency shifts in mutually opposite directions resulting in early generalization. High oxidative metabolism conditions high aggressiveness. Mitochondrial dysfunction, a gate to malignancy along the cancer transformation pathway, forms a narrow neck which could be convenient for cancer treatment.
- MeSH
- fibroblasty metabolismus MeSH
- lidé MeSH
- membránový potenciál mitochondrií fyziologie MeSH
- mitochondrie metabolismus MeSH
- nádorová transformace buněk metabolismus MeSH
- nádory metabolismus MeSH
- oxidační stres MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Těžká sepse je dnes významným medicínským a společenským problémem. Na rozdíl od jiných nemocí je spojená jak se stoupající incidencí, tak i se vzestupem počtu úmrtí. Z patogenetického hlediska jde onemocnění způsobené dysregulovanou odpovědí na infekci. Podstatou dysregulace je bud excesivní lokální zánět spojený s únikem prozánětlivých cytokinů do systémové cirkulace a nebo nadměrná systémová protizánětová odpověď. V prvním případě je výsledkem systémový prozánětlivý stav spojený s poruchou makrocirkulace, posléze mikrocirkulace a nakonec selháním mitochondrií. Tyto mechanizmy jsou odpovědné za vývoj selhávání vzdálených orgánů. V druhém případě je výsledkem deaktivace systémových a lokálních imunokompetentních buněk s rizikem nekontrolovaného množení mikroorganizmů. Postiženy jsou orgány s porušenou antimikrobiální bariérou, zejména plíce při umělé plicní ventilaci, krevní řečiště nebo močový systém při katetrizaci. V léčbě onemocnění byla klinicky testována četná skupina selektivně působících preparátů, ale jenom málo z nich bylo efektivních. Lze předpokládat, že příčinou těchto neúspěchů byla nehomogenita studované populace pacientů.
Severe sepsis is at present serious medical and social problem. In contrast to many other diseases its incidence shows an upward tendency and so does mortality due to sepsis. From the point of view of pathogenesis the cause of this complaint is a disturbed response to infection. The basis of this disruption is either a huge local inflammation that goes hand in hand with the penetration of proinflammatory cytokines into systemic circulation or an excessive proinflammatory systemic response. In the first instance the consequence is a systemic proinflammatory response accompanied by a disruption of macrocirculation, later also of microcirculation and finally mitochondrial failure. These mechanisms are responsible for the gradual failure of distant organs. In the second instance the consequence is a deactivation of systemic and local immunocompetent cells accompanied by the risk of uncontrolled proliferation of microorganisms. Affected are organs with a disturbed antimicrobial barrier, especially the lungs during mechanical ventilation, the bloodstream or the urinary system during catheterization. A large group of selectively acting preparations has been clinically tested in the management of this disorder, but only very few of these prepartions were efficacious. We may postulate that the great diversity of the investigated population of patients was responsible for this lack of success.
- MeSH
- cytokiny imunologie metabolismus škodlivé účinky MeSH
- epidemiologie statistika a číselné údaje trendy MeSH
- lidé MeSH
- mikrocirkulace metabolismus mikrobiologie patofyziologie MeSH
- mitochondriální nemoci metabolismus mikrobiologie patofyziologie MeSH
- multiorgánové selhání farmakoterapie mikrobiologie patofyziologie MeSH
- sepse epidemiologie etiologie mikrobiologie MeSH
- ventilace umělá s přerušovaným přetlakem mortalita ošetřování škodlivé účinky MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
Mitochondrial (mt) dysfunction in gliomas has been linked to abnormalities of mt energy metabolism, marked by a metabolic shift from oxidative phosphorylation to glycolysis ("Warburg effect"), disturbances in mt membrane potential regulation and apoptotic signaling, as well as to somatic mutations involving the Krebs cycle enzyme isocitrate dehydrogenase. Evolving biological concepts with potential therapeutic implications include interaction between microtubule proteins and mitochondria (mt) in the control of closure of voltage-dependent anion channels and in the regulation of mt dynamics and the mt-endoplasmic reticulum network. The cytoskeletal protein βIII-tubulin, which is overexpressed in malignant gliomas, has emerged as a prosurvival factor associated in part with mt and also as a marker of chemoresistance. Mt-targeted therapeutic strategies that are discussed include the following: (1) metabolic modulation with emphasis on dichloroacetate, a pyruvate dehydrogenase kinase inhibitor; (2) tumor cell death via apoptosis induced by tricyclic antidepressants, microtubule-modulating drugs, and small molecules or compounds capable of inflicting reactive oxygen species-dependent tumor cell death; and (3) pretreatment mt priming and mt-targeted prodrug cancer therapy.
- MeSH
- cílená molekulární terapie MeSH
- endoplazmatické retikulum metabolismus MeSH
- gliom * komplikace farmakoterapie genetika metabolismus patologie MeSH
- lidé MeSH
- mikrotubuly metabolismus MeSH
- mitochondriální nemoci * komplikace farmakoterapie genetika metabolismus patologie MeSH
- mitochondrie účinky léků genetika metabolismus patologie MeSH
- mutace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
... An Introduction to Mitochondria and the Heart -- Overview 1 -- What are mitochondria? ... ... 1 -- How to study mitochondria: New and old 3 -- Mitochondrial bioenergetics 6 -- Mitochondrial biogenesis ... ... 7 -- Cardiac mitochondrial changes during cardiac growth and development 9 -- Mitochondria: the primary ... ... Mitochondria Dysfunction in -- Cardiomyopathy and Heart failure -- 123 -- 157 -- Overview 157 -- Introduction ... ... and gene therapy 336 -- Targeting mitochondria using nucleic acids 336 -- Targeting mitochondria using ...
Developments in cardiovascular medicine ; v. 256
xviii, 400 s. : il. ; 25 cm
- MeSH
- energetický metabolismus MeSH
- ischemická choroba srdeční * MeSH
- mitochondriální DNA MeSH
- myokard * enzymologie metabolismus MeSH
- nemoci srdce MeSH
- srdeční mitochondrie * MeSH
- Publikační typ
- monografie MeSH
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- kardiologie
International review of neurobiology ; Vol. 53
[1st ed.] 559 s. : il.
BACKGROUND/AIMS: Deleterious effects of saturated fatty acids in skeletal muscle cells are well known but their impact on mitochondrial respiration has not been well studied. Mitochondrial oxidative damage has been implicated to play a role in their effect. The purpose of this study was to evaluate viability, mtDNA integrity and mitochondrial respiration in C2C12 myoblasts and myotubes exposed to palmitate and to test the effect of mitochondria-targeted antioxidants MitoQ and MitoTEMPOL in preventing palmitate-induced damage. METHODS: Cells were treated with tested compounds, mtDNA damage was detected by quantitative PCR and mitochondrial respiration was measured using an extracellular flux analyzer XF24. RESULTS: Palmitate caused mtDNA damage, which was associated with reduced mitochondrial respiration and cell death in myoblasts but not in myotubes. MitoTEMPOL was able to prevent palmitate-induced mtDNA damage in myoblasts but failed to prevent cell death. MitoQ did not show any protective effect and both compounds markedly inhibited mitochondrial respiration. CONCLUSION: Our results indicate that skeletal muscle progenitor cells could be the first target of the deleterious action of palmitate, as myoblasts appeared to be more sensitive to its effects than myotubes possibly in part due to a lower spare respiratory capacity in the former. Only MitoTEMPOL prevented palmitate-induced mtDNA damage but neither antioxidant was able to prevent cell death and both antioxidants had a marked negative effect on respiration.
- MeSH
- antioxidancia metabolismus MeSH
- buněčná smrt účinky léků MeSH
- kultivované buňky MeSH
- mitochondriální DNA účinky léků metabolismus MeSH
- mitochondrie účinky léků metabolismus patologie MeSH
- myoblasty účinky léků patologie MeSH
- myši MeSH
- palmitany farmakologie MeSH
- poškození DNA MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- azbest * škodlivé účinky toxicita MeSH
- ischemie mozku * MeSH
- jaterní mitochondrie * MeSH
- minerální vlákna * škodlivé účinky toxicita MeSH
- potkani inbrední F344 MeSH
- potkani Wistar MeSH
- reperfuze * MeSH
- srdeční mitochondrie * MeSH
- toxické účinky MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
Mitochondrie jsou součástí téměř všech eukaryotických buněk. Jejich funkcí je produkce a uvolňování energie k potřebám buňky, zajišťují beta oxidaci, podílejí se na syntéze steroidů, slouží k produkci tepla netřesovou termoregulací či ke skladování vápníkových iontů. Účastní se také apoptózy buňky a regulace membránového potenciálu. Energetická produkce mitochondrií ovlivňuje proliferaci buněk, změny genové exprese a tvorbu reaktivních forem kyslíku (ROS). Mitochondriální DNA (mtDNA) je uložená v matrix této organely a dědí se výhradně maternálně, proto je vhodným nástrojem pro zkoumání evoluce lidské populace, objasnění evolučních vztahů a také pro mapování migrace v průběhu historie. Genové mutace v jaderné DNA nebo mtDNA negativně ovlivňují mitochondriální aktivitu. V jejich důsledku vznikají různá mitochondriální onemocnění, která se vyznačují specifickým typem dědičnosti a různorodými klinickými projevy. Jejich vznik se nejčastěji vysvětluje teorií mitochondriálního stárnutí. Na kvalitu mitochondrií negativně působí mimo jiné některé vlivy prostředí, zejména záření. Příznivý vliv na mitochondrie má především zdravý životní styl, včetně stravy bohaté na vitaminy, fytonutrienty a antioxidanty.
Mitochondria are part of almost all eukaryotic cells. Their function is to produce and release energy for the needs of the cell, provide beta-oxidation, participate in the synthesis of steroids, serve for heat production through non-shaking thermoregulation or for calcium ions storage. They are also involved in the cell apoptosis and membrane potential regulation. Mitochondrial energy production affects cell proliferation, changes in gene expression, and the formation of reactive oxygen species (ROS). Mitochondrial DNA (mtDNA) is located in the matrix of mitochondria and is inherited exclusively maternally. Hence it is a suitable tool for studying the evolution of the human population, for elucidating evolutionary relationships, and for mapping the migration throughout history. Gene mutations in nuclear DNA or mtDNA negatively impact the mitochondrial activity. As a result, various mitochondrial diseases arise, which are characterized by a specific type of heredity and various clinical manifestations. Their origin has most often been explained by the theory of mitochondrial aging. The quality of mitochondria is negatively affected, among other, by environmental effects, mainly radiation. Most of all they benefit from healthy lifestyle including diets rich in vitamins, phytonutrients, and antioxidants.
- MeSH
- apoptóza MeSH
- lidé MeSH
- mitochondriální DNA MeSH
- mitochondriální nemoci MeSH
- mitochondrie * fyziologie genetika transplantace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
Cardiolipin, an anionic phospholipid, in the inner mitochondrial membrane is involved in the regulation of mitochondrial bioenergetics and in oxidative phosphorylation. In addition, cardiolipin plays also some role in mitochondria-dependent steps of apoptosis and in mitochondrial membrane dynamics. Alterations in cardiolipin structure (remodelling), its content or the composition of acyl chains as the consequences of oxidative damage due to reactive oxygen species (ROS) are proposed to be responsible for the changes in the mitochondrial membrane fluidity, ion permeability and structure/function of the mitochondrial electron-transport chain components. The mitochondrial dysfunction caused by the above events has been associ¬ated with several physiopathological conditions in human tissues, including Barth syndrome, ischemia/reperfusion, different thyroid states, diabetes, aging or heart failure.
- MeSH
- apoptóza MeSH
- Barthův syndrom etiologie MeSH
- biogeneze organel * MeSH
- buněčná membrána fyziologie MeSH
- Ca2+-ATPasy MeSH
- fosfolipidy biosyntéza fyziologie MeSH
- homeostáza MeSH
- kardiolipiny * biosyntéza fyziologie metabolismus MeSH
- kardiovaskulární nemoci etiologie MeSH
- lidé MeSH
- mitochondriální ADP/ATP-translokasy MeSH
- mitochondriální protonové ATPasy MeSH
- mitochondrie * fyziologie chemie MeSH
- nemoci endokrinního systému etiologie MeSH
- neurodegenerativní nemoci etiologie MeSH
- oxidační stres MeSH
- peroxidace lipidů MeSH
- reaktivní formy kyslíku MeSH
- Check Tag
- lidé MeSH