INTRODUCTION: The use of signal dogs for cancer detection is not yet routinely performed,but dogs and their powerful olfactory system have proven to be a unique and valuable tool for many lineages and are beginning to be incorporated into medical practice. This method has great advantages; the dog can detect a tumour in the human body already in preclinical stages, when the patient has no symptoms yet. The identification of cancer biomarkers to enable early diagnosis is a need for many types of cancer, whose prognosis is strongly dependent on the stage of the disease. However, this method also has its various pitfalls that must be taken into account. AIM: The aim of the study was to identify and highlight the factors that affect the level of detection accuracy, but also the conditions associated with olfactometric diagnosis. METHODS: The study included 48 dogs and 48 handlers, that were part of the training between 2016 and 2023.All those who started olfactometry training and remained in training for at least one year were included in the study. The dogs ranged in age from 8 months to 12 years and were of different races and sexes. After long-term observation, a qualitative analysis was performed and factors that may play a role in the early detection of the disease were listed. RESULTS: The results of the search for the different factors have been compiled into two groups, focussing on the actual handling of the patient biological sample from collection, processing, storage until transport, preparation of the sample,and detection. Focus on the actual work and behaviour of the dog and handler. CONCLUSION: There are many factors; however, it is worth addressing them because the canine sense of smell is one of the possible uses as a diagnostic method.
- Publication type
- Journal Article MeSH
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) autocatalytically releases itself out of the viral polyprotein to form a fully active mature dimer in a manner that is not fully understood. Here, we introduce several tools to help elucidate differences between cis (intramolecular) and trans (intermolecular) proteolytic processing and to evaluate inhibition of precursor Mpro. We found that many mutations at the P1 position of the N-terminal autoprocessing site do not block cis autoprocessing but do inhibit trans processing. Notably, substituting the WT glutamine at the P1 position with isoleucine retains Mpro in an unprocessed precursor form that can be purified and further studied. We also developed a cell-based reporter assay suitable for compound library screening and evaluation in HEK293T cells. This assay can detect both overall Mpro inhibition and the fraction of uncleaved precursor form of Mpro through separable fluorescent signals. We observed that inhibitory compounds preferentially block mature Mpro. Bofutrelvir and a novel compound designed in-house showed the lowest selectivity between precursor and mature Mpro, indicating that inhibition of both forms may be possible. Additionally, we observed positive modulation of precursor activity at low concentrations of inhibitors. Our findings help expand understanding of the SARS-CoV-2 viral life cycle and may facilitate development of strategies to target precursor form of Mpro for inhibition or premature activation of Mpro.
- MeSH
- Antiviral Agents * pharmacology chemistry MeSH
- COVID-19 Drug Treatment MeSH
- HEK293 Cells MeSH
- Protease Inhibitors pharmacology chemistry MeSH
- Coronavirus 3C Proteases * metabolism antagonists & inhibitors chemistry genetics MeSH
- Humans MeSH
- Mutation MeSH
- Drug Discovery * methods MeSH
- Proteolysis MeSH
- SARS-CoV-2 * enzymology drug effects metabolism genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
MicroRNAs (miRNAs) have emerged as important regulators of gene expression in various biological processes, including cancer. miR-182-5p has gained attention for its potential implications in gynecologic cancers, including breast, ovarian, endometrial, and cervical cancers. miR-182-5p dysregulation has been associated with multiple facets of tumor biology in gynecologic cancers, including tumor initiation, progression, metastasis, and therapeutic response. Studies have highlighted its involvement in key signaling pathways and cellular processes that contribute to cancer development and progression. In addition, miR-182-5p has shown potential as a diagnostic and prognostic biomarker, with studies demonstrating its correlation with clinicopathological features and patient outcomes. Furthermore, the therapeutic potential of miR-182-5p is being explored in gynecologic cancers. Strategies such as miRNA mimics or inhibitors targeting miR-182-5p have shown promise in preclinical and early clinical studies. These approaches aim to modulate miR-182-5p expression, restoring normal cellular functions and potentially enhancing treatment responses. Understanding the biologic and clinical implications of miR-182-5p in gynecologic cancers is crucial for the development of targeted therapeutic strategies and personalized medicine approaches. Further investigations are needed to unravel the specific target genes and pathways regulated by miR-182-5p. It is important to consider the emerging biologic and clinical implications of miR-182-5p in gynecologic cancers.
- MeSH
- Humans MeSH
- MicroRNAs * genetics MeSH
- Biomarkers, Tumor genetics MeSH
- Genital Neoplasms, Female * genetics therapy MeSH
- Prognosis MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
A double primary colorectal cancer (CRC) in a familial setting signals a high risk of CRC. In order to identify novel CRC susceptibility genes, we whole-exome sequenced germline DNA from nine persons with a double primary CRC and a family history of CRC. The detected variants were processed by bioinformatics filtering and prioritization, including STRING protein-protein interaction and pathway analysis. A total of 150 missense, 19 stop-gain, 22 frameshift and 13 canonical splice site variants fulfilled our filtering criteria. The STRING analysis identified 20 DNA repair/cell cycle proteins as the main cluster, related to genes CHEK2, EXO1, FAAP24, FANCI, MCPH1, POLL, PRC1, RECQL, RECQL5, RRM2, SHCBP1, SMC2, XRCC1, in addition to CDK18, ENDOV, ZW10 and the known mismatch repair genes. Another STRING network included extracellular matrix genes and TGFβ signaling genes. In the nine whole-exome sequenced patients, eight harbored at least two candidate DNA repair/cell cycle/TGFβ signaling gene variants. The number of families is too small to provide evidence for individual variants but, considering the known role of DNA repair/cell cycle genes in CRC, the clustering of multiple deleterious variants in the present families suggests that these, perhaps jointly, contributed to CRC development in these families.
- MeSH
- Adult MeSH
- Genetic Predisposition to Disease * MeSH
- Colorectal Neoplasms * genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- DNA Repair genetics MeSH
- Pedigree MeSH
- Exome Sequencing * methods MeSH
- Aged MeSH
- Germ-Line Mutation * MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Cancer immunotherapy is increasingly used in clinical practice, but its success rate is reduced by tumor escape from the immune system. This may be due to the genetic instability of tumor cells, which allows them to adapt to the immune response and leads to intratumoral immune heterogeneity. The study investigated spatial immune heterogeneity in the tumor microenvironment and its possible drivers in a mouse model of tumors induced by human papillomaviruses (HPV) following immunotherapy. Gene expression was determined by RNA sequencing and mutations by whole exome sequencing. A comparison of different tumor areas revealed heterogeneity in immune cell infiltration, gene expression, and mutation composition. While the mean numbers of mutations with every impact on gene expression or protein function were comparable in treated and control tumors, mutations with high or moderate impact were increased after immunotherapy. The genes mutated in treated tumors were significantly enriched in genes associated with ECM metabolism, degradation, and interactions, HPV infection and carcinogenesis, and immune processes such as antigen processing and presentation, Toll-like receptor signaling, and cytokine production. Gene expression analysis of DNA damage and repair factors revealed that immunotherapy upregulated Apobec1 and Apobec3 genes and downregulated genes related to homologous recombination and translesion synthesis. In conclusion, this study describes the intratumoral immune heterogeneity, that could lead to tumor immune escape, and suggests the potential mechanisms involved.
- MeSH
- Immunotherapy * methods MeSH
- Papillomavirus Infections immunology virology MeSH
- Humans MeSH
- Disease Models, Animal * MeSH
- Mutation * MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Tumor Microenvironment * immunology MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Exome Sequencing MeSH
- Tumor Escape genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Heavy metals are naturally occurring components of the Earth's crust and persistent environmental pollutants. Human exposure to heavy metals occurs via various pathways, including inhalation of air/dust particles, ingesting contaminated water or soil, or through the food chain. Their bioaccumulation may lead to diverse toxic effects affecting different body tissues and organ systems. The toxicity of heavy metals depends on the properties of the given metal, dose, route, duration of exposure (acute or chronic), and extent of bioaccumulation. The detrimental impacts of heavy metals on human health are largely linked to their capacity to interfere with antioxidant defense mechanisms, primarily through their interaction with intracellular glutathione (GSH) or sulfhydryl groups (R-SH) of antioxidant enzymes such as superoxide dismutase (SOD), catalase, glutathione peroxidase (GPx), glutathione reductase (GR), and other enzyme systems. Although arsenic (As) is believed to bind directly to critical thiols, alternative hydrogen peroxide production processes have also been postulated. Heavy metals are known to interfere with signaling pathways and affect a variety of cellular processes, including cell growth, proliferation, survival, metabolism, and apoptosis. For example, cadmium can affect the BLC-2 family of proteins involved in mitochondrial death via the overexpression of antiapoptotic Bcl-2 and the suppression of proapoptotic (BAX, BAK) mechanisms, thus increasing the resistance of various cells to undergo malignant transformation. Nuclear factor erythroid 2-related factor 2 (Nrf2) is an important regulator of antioxidant enzymes, the level of oxidative stress, and cellular resistance to oxidants and has been shown to act as a double-edged sword in response to arsenic-induced oxidative stress. Another mechanism of significant health threats and heavy metal (e.g., Pb) toxicity involves the substitution of essential metals (e.g., calcium (Ca), copper (Cu), and iron (Fe)) with structurally similar heavy metals (e.g., cadmium (Cd) and lead (Pb)) in the metal-binding sites of proteins. Displaced essential redox metals (copper, iron, manganese) from their natural metal-binding sites can catalyze the decomposition of hydrogen peroxide via the Fenton reaction and generate damaging ROS such as hydroxyl radicals, causing damage to lipids, proteins, and DNA. Conversely, some heavy metals, such as cadmium, can suppress the synthesis of nitric oxide radical (NO·), manifested by altered vasorelaxation and, consequently, blood pressure regulation. Pb-induced oxidative stress has been shown to be indirectly responsible for the depletion of nitric oxide due to its interaction with superoxide radical (O2·-), resulting in the formation of a potent biological oxidant, peroxynitrite (ONOO-). This review comprehensively discusses the mechanisms of heavy metal toxicity and their health effects. Aluminum (Al), cadmium (Cd), arsenic (As), mercury (Hg), lead (Pb), and chromium (Cr) and their roles in the development of gastrointestinal, pulmonary, kidney, reproductive, neurodegenerative (Alzheimer's and Parkinson's diseases), cardiovascular, and cancer (e.g. renal, lung, skin, stomach) diseases are discussed. A short account is devoted to the detoxification of heavy metals by chelation via the use of ethylenediaminetetraacetic acid (EDTA), dimercaprol (BAL), 2,3-dimercaptosuccinic acid (DMSA), 2,3-dimercapto-1-propane sulfonic acid (DMPS), and penicillamine chelators.
- MeSH
- Antioxidants metabolism MeSH
- Bioaccumulation MeSH
- Environmental Pollutants toxicity MeSH
- Humans MeSH
- Oxidative Stress * drug effects MeSH
- Metals, Heavy * toxicity MeSH
- Environmental Exposure adverse effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
OBJECTIVE: Research suggests that disrupted interoception contributes to the development and maintenance of functional neurological disorder (FND); however, no functional neuroimaging studies have examined the processing of interoceptive signals in patients with FND. METHODS: The authors examined univariate and multivariate functional MRI neural responses of 38 patients with mixed FND and 38 healthy control individuals (HCs) during a task exploring goal-directed attention to cardiac interoception-versus-control (exteroception or rest) conditions. The relationships between interoception-related neural responses, heartbeat-counting accuracy, and interoceptive trait prediction error (ITPE) were also investigated for FND patients. RESULTS: When attention was directed to heartbeat signals versus exteroception or rest tasks, FND patients showed decreased neural activations (and reduced coactivations) in the right anterior insula and bilateral dorsal anterior cingulate cortices (among other areas), compared with HCs. For FND patients, heartbeat-counting accuracy was positively correlated with right anterior insula and ventromedial prefrontal activations during interoception versus rest. Cardiac interoceptive accuracy was also correlated with bilateral dorsal anterior cingulate activations in the interoception-versus-exteroception contrast, and neural activations were correlated with ITPE scores, showing inverse relationships to those observed for heartbeat-counting accuracy. CONCLUSIONS: This study identified state and trait interoceptive disruptions in FND patients. Convergent between- and within-group findings contextualize the pathophysiological role of cingulo-insular (salience network) areas across the spectrum of functional seizures and functional movement disorder. These findings provide a starting point for the future development of comprehensive neurophysiological assessments of interoception for FND patients, features that also warrant research as potential prognostic and monitoring biomarkers.
- MeSH
- Adult MeSH
- Interoception * physiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Brain Mapping MeSH
- Young Adult MeSH
- Brain * physiopathology diagnostic imaging MeSH
- Nervous System Diseases * physiopathology diagnostic imaging MeSH
- Attention physiology MeSH
- Heart Rate physiology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
During development, tooth germs undergo various morphological changes resulting from interactions between the oral epithelium and ectomesenchyme. These processes are influenced by the extracellular matrix, the composition of which, along with cell adhesion and signaling, is regulated by metalloproteinases. Notably, these include matrix metalloproteinases (MMPs), a disintegrin and metalloproteinases (ADAMs), and a disintegrin and metalloproteinases with thrombospondin motifs (ADAMTSs). Our analysis of previously published scRNAseq datasets highlight that these metalloproteinases show dynamic expression patterns during tooth development, with expression in a wide range of cell types, suggesting multiple roles in tooth morphogenesis. To investigate this, Marimastat, a broad-spectrum inhibitor of MMPs, ADAMs, and ADAMTSs, was applied to ex vivo cultures of mouse molar tooth germs. The treated samples exhibited significant changes in tooth germ size and morphology, including an overall reduction in size and an inversion of the typical bell shape. The cervical loop failed to extend, and the central area of the inner enamel epithelium protruded. Marimastat treatment also disrupted proliferation, cell polarization, and organization compared with control tooth germs. In addition, a decrease in laminin expression was observed, leading to a disruption in continuity of the basement membrane at the epithelial-mesenchymal junction. Elevated hypoxia-inducible factor 1-alpha gene (Hif-1α) expression correlated with a disruption to blood vessel development around the tooth germs. These results reveal the crucial role of metalloproteinases in tooth growth, shape, cervical loop elongation, and the regulation of blood vessel formation during prenatal tooth development.NEW & NOTEWORTHY Inhibition of metalloproteinases during tooth development had a wide-ranging impact on molar growth affecting proliferation, cell migration, and vascularization, highlighting the diverse role of these proteins in controlling development.
- MeSH
- Hypoxia-Inducible Factor 1, alpha Subunit metabolism genetics MeSH
- Matrix Metalloproteinase Inhibitors pharmacology MeSH
- Hydroxamic Acids pharmacology MeSH
- Metalloproteases metabolism genetics MeSH
- Molar embryology growth & development metabolism enzymology MeSH
- Morphogenesis MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- Odontogenesis * MeSH
- Cell Proliferation * MeSH
- Gene Expression Regulation, Developmental MeSH
- Tooth Germ embryology metabolism enzymology MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Cyanobacteria are prokaryotic organisms characterised by their complex structures and a wide range of pigments. With their ability to fix CO2, cyanobacteria are interesting for white biotechnology as cell factories to produce various high-value metabolites such as polyhydroxyalkanoates, pigments, or proteins. White biotechnology is the industrial production and processing of chemicals, materials, and energy using microorganisms. It is known that exposing cyanobacteria to low levels of stressors can induce the production of secondary metabolites. Understanding of this phenomenon, known as hormesis, can involve the strategic application of controlled stressors to enhance the production of specific metabolites. Consequently, precise measurement of cyanobacterial viability becomes crucial for process control. However, there is no established reliable and quick viability assay protocol for cyanobacteria since the task is challenging due to strong interferences of autofluorescence signals of intercellular pigments and fluorescent viability probes when flow cytometry is used. We performed the screening of selected fluorescent viability probes used frequently in bacteria viability assays. The results of our investigation demonstrated the efficacy and reliability of three widely utilised types of viability probes for the assessment of the viability of Synechocystis strains. The developed technique can be possibly utilised for the evaluation of the importance of polyhydroxyalkanoates for cyanobacterial cultures with respect to selected stressor-repeated freezing and thawing. The results indicated that the presence of polyhydroxyalkanoate granules in cyanobacterial cells could hypothetically contribute to the survival of repeated freezing and thawing.
Yeasts are unicellular fungi that occur in a wide range of ecological niches, where they perform numerous functions. Furthermore, these microorganisms are used in industrial processes, food production, and bioremediation. Understanding the physiological and adaptive characteristics of yeasts is of great importance from ecological, biotechnological, and industrial perspectives. In this context, we evaluated the abilities to assimilate and ferment different carbon sources, to produce extracellular hydrolytic enzymes, and to tolerate salt stress, heavy metal stress, and UV-C radiation of two isolates of Eremothecium coryli, isolated from Momordica indica fruits. The two isolates were molecularly identified based on sequencing of the 18S-ITS1-5.8S-ITS2 region. Our isolates were able to assimilate nine carbon sources (dextrose, galactose, mannose, cellobiose, lactose, maltose, sucrose, melezitose, and pectin) and ferment three (glucose, maltose, and sucrose). The highest values of cellular dry weight were observed in the sugars maltose, sucrose, and melezitose. We observed the presence of hyphae and pseudohyphae in all assimilated carbon sources. The two isolates were also capable of producing amylase, catalase, pectinase, and proteases, with the highest values of enzymatic activity found in amylase. Furthermore, the two isolates were able to grow in media supplemented with copper, iron, manganese, nickel, and zinc and to tolerate saline stress in media supplemented with 5% NaCl. However, we observed a decrease in CFU at higher concentrations of these metals and NaCl. We also observed morphological changes in the presence of metals, which include changes in cell shape and cellular dimorphisms. The isolates were sensitive to UV-C radiation in the shortest exposure time (1 min). Our findings reinforce the importance of endophytic yeasts for biotechnological and industrial applications and also help to understand how these microorganisms respond to environmental variations caused by human activities.
- MeSH
- Endophytes * isolation & purification genetics metabolism physiology classification radiation effects MeSH
- Fermentation MeSH
- Phylogeny MeSH
- Stress, Physiological * MeSH
- Carbohydrate Metabolism * MeSH
- Fruit * microbiology MeSH
- Saccharomycetales * isolation & purification genetics physiology metabolism radiation effects classification MeSH
- Metals, Heavy toxicity MeSH
- Ultraviolet Rays MeSH
- Publication type
- Journal Article MeSH