The ciliate Diploplastron affine is known as a common species of the rumen fauna in cattle and sheep. This protozoon is able to digest cellulose, whereas its amylolytic activity is not well known. The objective of the reported studies was to examine the ability of D. affine to digest starch and to use this polysaccharide to cover the requirement for energy. The enzymatic studies showed that the protozoal cell extract degraded starch to reducing products with the rate being equivalent to 2.4 ± 0.47 μmol/L glucose per mg protein per min. Maltose, maltotriose and a small quantity of glucose were the end products of starch degradation. The degradation rate of maltose was only 0.05 μmol/L glucose per mg protein per min. Two peaks in α-amylase and a single peak in maltase activity were found following molecular filtration of ciliate cell extract, whereas three starch-degrading enzymes were identified by a zymographic technique. Incubation of the bacteria-free ciliates with starch in the presence of antibiotics resulted in a release of volatile fatty acids with the net rate of 25 pmol per protozoan per h. Acetic acid followed by butyric acid was the main product of starch fermentation. The results confirmed the ability of D. affine to utilize starch in energy-yielding processes.
- MeSH
- Rumen parasitology MeSH
- Ciliophora enzymology metabolism MeSH
- Fermentation MeSH
- Sheep MeSH
- Protozoan Proteins metabolism MeSH
- Starch metabolism MeSH
- Digestion MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Bifidobacteria (246 strains in total) were isolated from rectal samples of infants and adult humans and animals, and from intestinal samples of calves. Twenty-five strains grew well on mucin: 20 from infants, two from adults, and three from goatlings. Poor or no growth on mucin was observed in 156 bifidobacterial strains of animal origin. The difference between human and animal isolates in ability to grow on mucin was significant at p < 0.001. Nine human strains with the best growth on mucin were identified as Bifidobacterium bifidum. These strains produced extracellular, membrane-bound, and intracellular mucinases with activities of 0.11, 0.53, and 0.09 μmol/min of reducing sugars per milligram of protein, respectively. Membrane-bound mucinases were active between pH 5 and 10. The optimum pH of extracellular mucinases was 6-7. Fermentation patterns in cultures grown on mucin and glucose differed. On mucin, the acetate-to-lactate ratio was higher than in cultures grown on glucose (p = 0.012). We showed that the bifidobacteria belong to the mucin-fermenting bacteria in humans, but their significance in mucin degradation in animals seems to be limited.
- MeSH
- Bifidobacterium enzymology genetics isolation & purification metabolism MeSH
- Adult MeSH
- Fermentation MeSH
- Glucose metabolism MeSH
- Infant MeSH
- Hydrogen-Ion Concentration MeSH
- Goats MeSH
- Humans MeSH
- Mucins metabolism MeSH
- Polysaccharide-Lyases chemistry metabolism MeSH
- Cattle MeSH
- Enzyme Stability MeSH
- Temperature MeSH
- Intestine, Large microbiology MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Infant MeSH
- Humans MeSH
- Cattle MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
Dahi, an artisanal fermented milk product, widely consumed in Pakistan, is microbiologically diverse, and many bacterial communities await investigation. The current study is first to present probiotic assessment of Bacillus species strains isolated from dahi. Based on 49 identified strains assessed, only 6 strains, i.e., Bacillus licheniformis QAUBL19, QAUBL1901, and QAUBL1902; Bacillus mycoides QAUBM19 and QAUBM1901; and Bacillus subtilis QAUBSS1 were having prominent persistence in the simulated gastrointestinal fluids, being non-hemolytic, with no DNase activity. Probiotic characteristics, cholesterol-assimilating, and carbohydrate-fermenting capabilities were assessed for all the strains. These six strains each showed variant cholesterol assimilating abilities. B. licheniformis QAUBL19 retaining most desired probiotic traits presented both notable cholesterol assimilating and bile salt hydrolase activities. It can be used as a probiotic of choice with hypocholesterolemia ability. B. subtilis QAUBSS1 showed wide carbohydrate fermentation ability and strongest antibacterial potential. It is likely to be considered a probiotic for living beings and starter culture for fermentation of food/feed.
- MeSH
- Bacillus * genetics MeSH
- Cholesterol MeSH
- Fermentation MeSH
- Cultured Milk Products * MeSH
- Milk microbiology MeSH
- Probiotics * MeSH
- Carbohydrates MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
Halophilic lactic acid bacteria have been widely found in various high-salt fermented foods. The distribution of these species in salt-fermented foods contributes significantly to the development of the product's flavor. Besides, these bacteria also have the ability to biosynthesize bioactive components which potentially apply to different areas. In this review, insights into the metabolic properties, salt stress responses, and potential applications of these bacteria have been have been elucidated. The purpose of this review highlights the important role of halophilic lactic acid bacteria in improving the quality and safety of salt-fermented products and explores the potential application of these bacteria.
- MeSH
- Fermentation MeSH
- Fermented Foods * microbiology MeSH
- Lactobacillales * metabolism MeSH
- Food Microbiology MeSH
- Food Industry MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Dietary plant glucosides are phytochemicals whose bioactivity and bioavailability can be modified by glucoside hydrolase activity of intestinal microbiota through the release of acylglycones. Bifidobacteria are gut commensals whose genomic potential indicates host-adaption as they possess a diverse set of glycosyl hydrolases giving access to a variety of dietary glycans. We hypothesized bifidobacteria with β-glucosidase activity could use plant glucosides as fermentation substrate and tested 115 strains assigned to eight different species and from different hosts for their potential to express β-glucosidases and ability to grow in the presence of esculin, amygdalin, and arbutin. Concurrently, the antibacterial activity of arbutin and its acylglycone hydroquinone was investigated. Beta-glucosidase activity of bifidobacteria was species specific and most prevalent in species occurring in human adults and animal hosts. Utilization and fermentation profiles of plant glucosides differed between strains and might provide a competitive benefit enabling the intestinal use of dietary plant glucosides as energy sources. Bifidobacterial β-glucosidase activity can increase the bioactivity of plant glucosides through the release of acylglycone.
- Publication type
- Journal Article MeSH
During yeast dough fermentation, such as the high-sucrose bread-making process, the yeast cells are subjected to considerable osmotic stress, resulting in poor outcomes. Invertase is important for catalyzing the irreversible hydrolysis of sucrose to free glucose and fructose, and decreasing the catalytic activity of the invertase may reduce the glucose osmotic stress on the yeast. In this study, we performed structural design and site-directed mutagenesis (SDM) on the Saccharomyces cerevisiae invertase (ScInV) in an Escherichia coli expression system to study the catalytic activity of ScInV mutants in vitro. In addition, we generated the same mutation sites in the yeast endogenous genome and tested their invertase activity in yeast and dough fermentation ability. Our results indicated that appropriately reduced invertase activity of yeast ScInV can enhance dough fermentation activity under high-sucrose conditions by 52%. Our systems have greatly accelerated the engineering of yeast endogenous enzymes both in vitro and in yeast, and shed light on future metabolic engineering of yeast.
Rumen ciliate protozoa intensively engulf bacteria. However, their ability to utilize murein which is the main polysaccharide of bacterial cell wall has hardly been recognized. The present study concerns the ability of the rumen protozoa Diploplastron affine to digest and ferment murein. The ciliates were isolated from the rumen fluid and grown in vitro or inoculated into the rumen of defaunated sheep. The results of long-term cultivation of protozoa showed a positive correlation between their number and murein content in the culture medium. It was also found that bacteria-free D. affine ciliates incubated with or without murein produced volatile fatty acids at the rate of 12.3 and 8.7 pmol/h per protozoan, respectively, acetic, butyric and propionic acids being the three main acids released to the medium. Enzyme studies performed with the use of protozoan cell extract prepared from bacteria-free ciliates degraded murein at a rate of 25 U/mg protein per h; two mureinolytic enzymes were identified by zymographic technique in the examined preparation.
This review emphasises the fact that studies of acetone-butanol-ethanol (ABE) fermentation by solventogenic clostridia cannot be limited to research on the strain Clostridium acetobutylicum ATCC 824. Various 1-butanol producing species of the genus Clostridium, which differ in their patterns of product formation and abilities to ferment particular carbohydrates or glycerol, are described. Special attention is devoted to species and strains that do not produce acetone naturally and to the utilisation of lactose, inulin, glycerol and mixtures of pentose and hexose carbohydrates. Furthermore, process-mapping tools based on different principles, including flow cytometry, DNA microarray analysis, mass spectrometry, Raman microscopy, FT-IR spectroscopy and anisotropy of electrical polarisability, which might facilitate fermentation control and a deeper understanding of ABE fermentation, are introduced. At present, the methods with the greatest potential are flow cytometry and transcriptome analysis. Flow cytometry can be used to visualise and capture cells within clostridial populations as they progress through the normal cell cycle, in which symmetric and asymmetric cell division phases alternate. Cell viability of a population of Clostridium pasteurianum NRRL B-598 was determined by flow cytometry. Transcriptome analysis has been used in various studies including the detection of genes expressed in solventogenic phase, at sporulation, in the stress response, to compare expression patterns of different strains or parent and mutant strains, for studies of catabolite repression, and for the detection of genes involved in the transport and metabolism of 11 different carbohydrates. Interestingly, the results of transcriptome analysis also challenge our earlier understanding of the role of the Spo0A regulator in initiation of solventogenesis in C. acetobutylicum ATCC 824. Lastly, the review describes other significant recent discoveries, including the deleterious effects of intracellular formic acid accumulation in C. acetobutylicum DSM 1731 cells on the metabolic switch from acidogenesis to solventogenesis and the development of a high-cell density continuous system using Clostridium saccharoperbutylacetonicum N1-4, in which 1-butanol productivity of 7.99 g/L/h was reached.
- MeSH
- Acetone metabolism MeSH
- Butanols metabolism MeSH
- Clostridium cytology genetics metabolism MeSH
- Ethanol metabolism MeSH
- Fermentation * MeSH
- Glycerol metabolism MeSH
- Hexoses metabolism MeSH
- Inulin metabolism MeSH
- Lactose metabolism MeSH
- Pentoses metabolism MeSH
- Flow Cytometry MeSH
- Spectrum Analysis, Raman MeSH
- Oligonucleotide Array Sequence Analysis MeSH
- Spectroscopy, Fourier Transform Infrared MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
The net effect of increased wort osmolarity on fermentation time, bottom yeast vitality and sedimentation, beer flavor compounds, and haze was determined in fermentations with 12 degrees all-malt wort supplemented with sorbitol to reach osmolarity equal to 16 degrees and 20 degrees. Three pitchings were performed in 12 degrees/12 degrees/12 degrees, 16 degrees/16 degrees/12 degrees, and 20 degrees/20 degrees/12 degrees worts. Fermentations in 16 degrees and 20 degrees worts decreased yeast vitality measured as acidification power (AP) by a maximum of 10%, lowered yeast proliferation, and increased fermentation time. Repitching aggravated these effects. The 3rd "back to normal" pitching into 12 degrees wort restored the yeast AP and reproductive abilities while the extended fermentation time remained. Yeast sedimentation in 16 degrees and 20 degrees worts was delayed but increased about two times at fermentation end relative to that in 12 degrees wort. Third "back-to-normal" pitching abolished the delay in sedimentation and reduced its extent, which became nearly equal in all variants. Beer brewed at increased osmolarity was characterized by increased levels of diacetyl and pentanedione and lower levels of dimethylsulfide and acetaldehyde. Esters and higher alcohols displayed small variations irrespective of wort osmolarity or repitching. Increased wort osmolarity had no appreciable effect on the haze of green beer and accelerated beer clarification during maturation. In all variants, chill haze increased with repitching.
- MeSH
- Acetaldehyde analysis MeSH
- Alcohols analysis MeSH
- Time Factors MeSH
- Taste MeSH
- Diacetyl analysis MeSH
- Esters analysis MeSH
- Fermentation MeSH
- Financing, Organized MeSH
- Microbial Viability MeSH
- Osmotic Pressure MeSH
- Pentanes analysis MeSH
- Beer analysis microbiology MeSH
- Saccharomyces physiology MeSH
- Sulfides analysis MeSH
S. kudriavzevii has potential for fermentations and other biotechnological applications, but is sensitive to many types of stress. We tried to increase its tolerance and performance via the expression of various transporters from different yeast species. Whereas the overexpression of Z. rouxii fructose uptake systems (ZrFfz1 and ZrFsy1) or a glycerol importer (ZrStl1) did not improve the ability of S. kudriavzevii to consume fructose and survive osmotic stress, the expression of alkali-metal-cation exporters (ScEna1, ScNha1, YlNha2) improved S. kudriavzevii salt tolerance, and that of ScNha1 also the fermentation performance. The level of improvement depended on the type and activity of the transporter suggesting that the natural sensitivity of S. kudriavzevii cells to salts is based on a non-optimal functioning of its own transporters.
- MeSH
- Fermentation MeSH
- Fructose metabolism MeSH
- Glycerol metabolism MeSH
- Ion Transport physiology MeSH
- Osmotic Pressure physiology MeSH
- Cation Transport Proteins genetics metabolism MeSH
- Saccharomyces metabolism MeSH
- Yeast, Dried MeSH
- Salt Tolerance physiology MeSH
- Publication type
- Journal Article MeSH