Representative signal
Dotaz
Zobrazit nápovědu
Members of the casein kinase 1 (CK1) family have emerged as key regulators of cellular signaling and as potential drug targets. Functional annotation of the 7 human isoforms would benefit from isoform-selective inhibitors, allowing studies on the role of these enzymes in normal physiology and disease pathogenesis. However, due to significant sequence homology within the catalytic domain, isoform selectivity is difficult to achieve with conventional small molecules. Here, we used a PROTAC (Proteolysis TArgeting Chimeras) approach to develop a highly selective degrader AH078 (37) targeting CK1δ and CK1ε with excellent selectivity over the highly related CK1α isoform. The developed PROTAC, AH078 (37) selectively degraded CK1δ and CK1ε with a DC50 of 200 nM. Characterization of AH078 (37) revealed a VHL and Ubiquitin-dependent degradation mechanism. Thus, AH078 (37) represents a versatile chemical tool to study CK1δ and CK1ε function in cellular systems.
- MeSH
- inhibitory proteinkinas * farmakologie chemie metabolismus MeSH
- kaseinkinasa Idelta * antagonisté a inhibitory metabolismus MeSH
- kaseinkinasa Iepsilon * antagonisté a inhibitory metabolismus MeSH
- lidé MeSH
- objevování léků MeSH
- proteolýza * účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Signální dráha PI3K/AKT/mTOR hraje zásadní roli v řadě buněčných procesů a rovněž v karcinogenezi. V tuto chvíli máme k dispozici několik molekul, které jsou schopny cílit na přenos signálu v rámci této dráhy a účinně blokovat nádorový růst. Kapivasertib představuje novou molekulu blokující alterovaný gen pro PIK3CA/AKT1/PTEN a podle klinické studie CAPItello-291 získal registraci pro pacienty předléčené hormonální léčbou, v kombinaci s fulvestrantem a současně s přítomností minimálně jedné výše uvedené mutace.
PI3K/AKT/mTOR signaling pathway plays a key role in several cell processes and also in the carcinogenesis. At this moment there are several molecules which can target cell signaling in this pathway and effectively blockade cancer progression. Capivasertib represents a new drug which target the altered gen for PIK3CA/AKT1/PTEN and according to the results of the clinical trial CAPItello-291 gained registration for the previously treated breast cancer patients in combination with fulvestrant and harboring at least one above mentioned mutation.
Bats are the natural reservoirs for a variety of emerging and re-emerging viruses. Among them, rabies virus (genus Lyssavirus, family Rhabdoviridae) is one of the first and most emblematic described in these animals. Since its first description, several new bat lyssaviruses have been regularly identified. In addition to lyssaviruses, other bat rhabdoviruses have also been discovered, including members of the genera Vesiculovirus, Ledantevirus and, more recently, Alphanemrhavirus and Tupavirus. However, the family Rhabdoviridae is one of the most abundant and diverse viral families, with 434 officially recognized species, divided into 5 subfamilies and 56 different genera. The number of rhabdoviruses associated with bats is therefore probably higher than that currently available. In this study, we first developed and validated a combined nested RT-qPCR technique (pan-rhabdo RT-nqPCR) dedicated to the broad detection of animal rhabdoviruses. After validation, this technique was used for a large retrospective screening of archival bat samples (n = 1962), including blood (n = 816), brain (n = 723) and oral swab (n = 423). These samples were collected from various bat species over a 12-year period (2007-2019) in 9 different countries in Europe and Africa. A total of 23 samples (1.2%) from bat species Miniopterus schreibersii, Rhinolophus euryale and Rhinolophus ferrumequinum tested positive for rhabdovirus infection, including 17 (2.1%) blood and 6 (1.4%) oral swab samples, all collected from bats originating from the Mediterranean region. Complete virus genome sequences were obtained by next-generation sequencing for most of the positive samples. Molecular and phylogenetic analysis of these sequences demonstrated that the virus isolates, named Mediterranean bat virus (MBV), were closely related and represented a new species, Mediterranean vesiculovirus, within the genus Vesiculovirus. MBV was more specifically related to other bat vesiculoviruses previously described from China and North America, together clustering into a distinct group of bat viruses within this genus. Interestingly, our results suggest that MBV is widespread, at least in the western part of the Mediterranean region, where it circulates in the blood of several bat species. These results expand the host range and viral diversity of bat vesiculoviruses, and pave the way for further studies to determine the transmission route and dissemination dynamics of these viruses in bat colonies, as well as to assess their potential threat to public health.
- MeSH
- Chiroptera * virologie MeSH
- fylogeneze MeSH
- genom virový MeSH
- infekce viry z čeledi Rhabdoviridae * veterinární epidemiologie virologie MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- Vesiculovirus * genetika izolace a purifikace klasifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Středomoří MeSH
BACKGROUND: Lipopolysaccharide (LPS)-induced inflammation of lung tissues triggers irreversible alterations in the lung parenchyma, leading to fibrosis and pulmonary dysfunction. While the molecular and cellular responses of immune and connective tissue cells in the lungs are well characterized, the specific epithelial response remains unclear due to the lack of representative cell models. Recently, we introduced human embryonic stem cell-derived expandable lung epithelial (ELEP) cells as a novel model for studying lung injury and regeneration. METHODS: ELEPs were derived from the CCTL 14 human embryonic stem cell line through activin A-mediated endoderm specification, followed by further induction toward pulmonary epithelium using FGF2 and EGF. ELEPs exhibit a high proliferation rate and express key structural and molecular markers of alveolar progenitors, such as NKX2-1. The effects of Escherichia coli LPS serotype O55:B5 on the phenotype and molecular signaling of ELEPs were analyzed using viability and migration assays, mRNA and protein levels were determined by qRT-PCR, western blotting, and immunofluorescent microscopy. RESULTS: We demonstrated that purified LPS induces features of a hybrid epithelial-to-mesenchymal transition in pluripotent stem cell-derived ELEPs, triggers the unfolded protein response, and upregulates intracellular β-catenin level through retention of E-cadherin within the endoplasmic reticulum. CONCLUSIONS: Human embryonic stem cell-derived ELEPs provide a biologically relevant, non-cancerous lung cell model to investigate molecular responses to inflammatory stimuli and address epithelial plasticity. This approach offers novel insights into the fine molecular processes underlying lung injury and repair.
- MeSH
- buněčné linie MeSH
- CD antigeny metabolismus MeSH
- endoplazmatické retikulum * metabolismus účinky léků MeSH
- epitelo-mezenchymální tranzice * účinky léků MeSH
- epitelové buňky * účinky léků metabolismus cytologie MeSH
- kadheriny * metabolismus MeSH
- lidé MeSH
- lidské embryonální kmenové buňky * cytologie MeSH
- lipopolysacharidy * farmakologie MeSH
- plíce * cytologie MeSH
- tyreoidální jaderný faktor 1 MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
T-cell engagers represent a transformative approach to cancer immunotherapy leveraging bispecific and multispecific antibody constructs to redirect T-cell cytotoxicity toward malignant cells. These molecules bridge T cells and tumor cells by simultaneously binding CD3 on T cells and tumor-associated antigens on cancer cells, thereby enabling precise immune targeting even in immunologically "cold" tumors. Recent advancements include conditional T-cell engagers activated by tumor microenvironment proteases to minimize off-tumor toxicity as well as T-cell receptor-based engagers targeting intracellular antigens via MHC presentation. Clinical successes, such as Kimmtrak in metastatic uveal melanoma, underscore good potential of these modalities, while challenges persist in the management of cytokine release syndrome, neurotoxicity, and tumor resistance. Emerging multispecific engagers are aimed at enhancing efficacy via incorporation of costimulatory signals, thus offering a promising trajectory for next-generation immunotherapies. T-cell engagers are also gaining attention in the treatment of autoimmune disorders, where they can be designed to selectively modulate pathogenic immune responses. By targeting autoreactive T or B cells, T-cell engagers hold promise for restoring immune tolerance in such conditions as HLA-B*27-associated autoimmunity subtypes, multiple sclerosis, rheumatoid arthritis, and type 1 diabetes mellitus. Engineering strategies that incorporate inhibitory receptors or tissue-specific antigens may further refine T-cell engagers' therapeutic potential in autoimmunity, by minimizing systemic immunosuppression while preserving immune homeostasis.
- MeSH
- imunoterapie * metody MeSH
- lidé MeSH
- nádorové mikroprostředí imunologie MeSH
- nádory * imunologie terapie MeSH
- protilátky bispecifické terapeutické užití imunologie MeSH
- receptory antigenů T-buněk imunologie metabolismus MeSH
- T-lymfocyty * imunologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Plicní hypertenze je definována jako syndrom charakterizovaný zvýšením středního tlaku v plicnici > 20 mm Hg. Plicní arteriální hypertenze (PAH) je vzácné onemocnění, které tvoří přibližně 1 % všech případů chronické plicní hypertenze. V patofyziologii je rozhodující iniciálně vazokonstrikce a pak remodelace na úrovni plicních arteriol provázená postupným nárůstem plicní cévní rezistence a chronickým tlakovým za tížením pravé komory srdeční. V léčbě PAH dominuje farmakoterapie. U nemocných s pozitivním vazodila tačním testem je indikována léčba vysokými dávkami blokátorů kalciových kanálů. V případě negativního testu (většina nemocných) je indikována farmakoterapie prostanoidy, agonisty prostacyklinových receptorů, antagonisty endotelinových receptorů, inhibitory fosfodiesterázy 5 a stimulátory solubilní guanylátcyklázy (iniciální kombinační léčba u pacientů bez kardiopulmonálních komorbidit, iniciální monoterapie u pacien tů s kardiopulmonálními komorbiditami, opakovaná reevaluace během sledování a adekvátní modifikace léčby). Nadále vysoká mortalita pacientů léčených v současné době pro PAH podle těchto doporučení do kumentuje naléhavou potřebu nejen časnější diagnózy, ale také účinnější léčby. Zásadní změnu ve farma koterapii PAH od posledních doporučení Evropské kardiologické společnosti (ESC) / Evropské respirační společnosti (ERS) z roku 2022 představuje sotatercept, který vede k navození balancované signalizace mezi proliferačním působením signální cesty aktivinu a antiproliferačním působením kostního morfogenetického proteinu. Vazbou na ligandy receptoru pro aktivin moduluje sotatercept proliferaci, a tak představuje první terapeutickou možnost u PAH dominantně ovlivnit cévní remodelaci na úrovni plicních arteriol jako klíčový patogenetický mechanismus.
Pulmonary hypertension is defined as a syndrome characterized by an increase of the mean pulmonary artery pressure >20 mmHg. Pulmonary arterial hypertension (PAH) is a rare disease that accounts for approximately 1% of all cases of chronic pulmonary hypertension. In the pathophysiology, the key factor is initially vasoconstriction, followed by remodeling of pulmonary arterioles, accompanied by an increase of pulmonary vascular resistance and the right ventricle chronic pressure overload. In the treatment of PAH, medical therapy is dominant. Patients with a positive vasoreactivity testing are indicated for treatment with high doses of calcium channel blockers. In the case of a negative test (in most patients), medical therapy with prostanoids, prostacyclin receptor agonists, endothelin receptor antagonists, phosphodiesterase 5 inhibitors, and soluble guanylate cyclase stimulators is indicated (initial combination therapy for patients without cardiopulmonary comorbidities, initial monotherapy for patients with cardiopulmonary comorbidities, repeated reevaluation during follow-up and appropriate modification of treatment). The still high mortality of patients currently treated for PAH according to these recommendations documents the urgent need not only for earlier diagnosis but also for a more effective treatment. A major change in the medical therapy of PAH since the last 2022 ESC/ERS guidelines is sotatercept, which leads to the induction of balanced signaling between the proliferative effects of the activin signaling pathway and the antiproliferative effects of bone morphogenetic protein. By binding to activin receptor ligands, sotatercept modulates proliferation and thus represents the first therapeutic option to predominantly influence vascular remodeling of pulmonary arterioles, which is a key pathophysiological mechanism in PAH.
Cardiovascular diseases are associated with an altered cardiomyocyte metabolism. Because of a shortage of human heart tissue, experimental studies mostly rely on alternative approaches including animal and cell culture models. Since the use of isolated primary cardiomyocytes is limited, immortalized cardiomyocyte cell lines may represent a useful tool as they closely mimic human cardiomyocytes. This study is focused on the AC16 cell line generated from adult human ventricular cardiomyocytes. Despite an increasing number of studies employing AC16 cells, a comprehensive proteomic, bioenergetic, and oxygen-sensing characterization of proliferating vs. differentiated cells is still lacking. Here, we provide a comparison of these two stages, particularly emphasizing cell metabolism, mitochondrial function, and hypoxic signaling. Label-free quantitative mass spectrometry revealed a decrease in autophagy and cytoplasmic translation in differentiated AC16, confirming their phenotype. Cell differentiation led to global increase in mitochondrial proteins [e.g. oxidative phosphorylation (OXPHOS) proteins, TFAM, VWA8] reflected by elevated mitochondrial respiration. Fatty acid oxidation proteins were increased in differentiated cells, whereas the expression levels of proteins associated with fatty acid synthesis were unchanged and glycolytic proteins were decreased. There was a profound difference between proliferating and differentiated cells in their response to hypoxia and anoxia-reoxygenation. We conclude that AC16 differentiation leads to proteomic and metabolic shifts and altered cell response to oxygen deprivation. This underscores the requirement for proper selection of the particular differentiation state during experimental planning.NEW & NOTEWORTHY Proliferating and differentiated AC16 cell lines exhibit distinct proteomic and metabolic profiles with critical implications for experimental design. Proliferating cells predominantly utilize glycolysis and are highly sensitive to hypoxia, whereas differentiated cells display enhanced mitochondrial biogenesis, oxidative phosphorylation, and resistance to anoxia-reoxygenation. These findings provide novel insights into the metabolic adaptations during differentiation and highlight the necessity of selecting the appropriate cellular stage to ensure accurate experimental outcomes.
- MeSH
- buněčná diferenciace * fyziologie MeSH
- buněčné linie MeSH
- energetický metabolismus MeSH
- hypoxie buňky fyziologie MeSH
- kardiomyocyty * metabolismus MeSH
- lidé MeSH
- mitochondriální proteiny metabolismus MeSH
- mitochondrie * metabolismus MeSH
- oxidativní fosforylace MeSH
- proliferace buněk MeSH
- proteomika metody MeSH
- signální transdukce * fyziologie MeSH
- srdeční mitochondrie * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: SOT201 and its murine surrogate mSOT201 are novel cis-acting immunocytokines consisting of a humanized/murinized/, Fc-silenced anti-programmed cell death protein 1 (PD-1) monoclonal antibody (mAb) fused to an attenuated human interleukin (IL)-15 and the IL-15Rα sushi+ domain. Murine mPD1-IL2v is a conjugate of a murinized, Fc silenced anti-PD-1 mAb bearing human IL-2 with abolished IL-2Rα binding. These immunocytokines spatiotemporally reinvigorate PD-1+ CD8+ tumor-infiltrating lymphocytes (TILs) via cis-activation and concomitantly activate the innate immunity via IL-2/15Rβγ signaling. METHODS: Human peripheral blood mononuclear cell and cell lines were used to evaluate cis/trans activity of SOT201. Anti-PD-1 mAb responsive (MC38, CT26) and resistant (B16F10, CT26 STK11 KO) mouse tumor models were used to determine the anticancer efficacy, and the underlying immune cell activity was analyzed via single-cell RNA sequencing and flow cytometry. The expansion of tumor antigen-specific CD8+ T cells by mSOT201 or mPD1-IL2v and memory CD8+ T-cell generation in vivo was determined by flow cytometry. RESULTS: SOT201 delivers attenuated IL-15 to PD-1+ T cells via cis-presentation, reinvigorates exhausted human T cells and induces higher interferon-γ production than pembrolizumab in vitro. mSOT201 administered as a single dose exhibits strong antitumor efficacy with several complete responses in all tested mouse tumor models. While mPD1-IL2v activates CD8+ T cells with a 50-fold higher potency than mSOT201 in vitro, mSOT201 more effectively reactivates effector exhausted CD8+ T cells (Tex), which demonstrate higher cytotoxicity, lower exhaustion and lower immune checkpoint transcriptional signatures in comparison to mPD1-IL2v in MC38 tumors in vivo. This can be correlated with a higher rate of complete responses in the MC38 tumor model following mSOT201 treatment when compared with mPD1-IL2v. mSOT201 increased the relative number of tumor antigen-specific CD8+ T cells, and unlike mPD1-IL2v stimulated greater expansion of adoptively transferred ovalbumin-primed CD8+ T cells simultaneously limiting the peripheral CD8+ T-cell sink, leading to the development of memory CD8+ T cells in vivo. CONCLUSIONS: SOT201 represents a promising therapeutic candidate that preferentially targets PD-1+ TILs, delivering balanced cytokine activity for reviving CD8+ Tex cells in tumors. SOT201 is currently being evaluated in the Phase I clinical study VICTORIA-01 (NCT06163391) in patients with advanced metastatic cancer.
- MeSH
- antigeny CD279 * antagonisté a inhibitory MeSH
- CD8-pozitivní T-lymfocyty imunologie MeSH
- inhibitory kontrolních bodů farmakologie MeSH
- interleukin-15 * genetika farmakologie MeSH
- lidé MeSH
- myši MeSH
- nádorové buněčné linie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The eye represents a highly specialized organ, with its main function being to convert light signals into electrical impulses. Any damage or disease of the eye induces a local inflammatory reaction that could be harmful for the specialized ocular cells. Therefore, the eye developed several immunoregulatory mechanisms which protect the ocular structures against deleterious immune reactions. This protection is ensured by the production of a variety of immunosuppressive molecules, which create the immune privilege of the eye. In addition, ocular cells are potent producers of numerous growth and trophic factors which support the survival and regeneration of diseased and damaged cells. If the immune privilege of the eye is interrupted and the regulatory mechanisms are not sufficiently effective, the eye disease can progress and result in worsening of vision or even blindness. In such cases, external immunotherapeutic interventions are needed. One perspective possibility of treatment is represented by mesenchymal stromal/stem cell (MSC) therapy. MSCs, which can be administered intraocularly or locally into diseased site, are potent producers of various immunoregulatory and regenerative molecules. The main advantages of MSC therapy include the safety of the treatment, the possibility to use autologous (patient's own) cells, and observations that the therapeutic properties of MSCs can be intentionally regulated by external factors during their preparation. In this review, we provide a survey of the immunoregulatory and regenerative mechanisms in the eye and describe the therapeutic potential of MSC application for corneal damages and retinal diseases.
Background and Objectives: Aortic stenosis (AS) is a frequent valvular disease characterized by the obstruction of left ventricular outflow. The resulting hemodynamic and structural changes create an arrhythmogenic substrate, with sudden cardiac death (SCD) often caused by ventricular arrhythmias (VAs) being a feared complication. This review examines the relationship between severe AS and VA, detailing the epidemiology, pathophysiological mechanisms, risk factors, and management approaches prior to aortic valve replacement (AVR). Materials and Methods: We conducted a comprehensive narrative review of the historical and contemporary literature investigating ventricular arrhythmias in severe aortic stenosis. Literature searches were performed in PubMed, MEDLINE, and Scopus databases using keywords, including "aortic stenosis", "ventricular arrhythmia", "sudden cardiac death", and "aortic valve replacement". Both landmark historical studies and modern investigations utilizing advanced monitoring techniques were included to provide a complete evolution of the understanding. Results: The prevalence of ventricular ectopy and non-sustained ventricular tachycardia increases with AS severity and symptom onset. Left ventricular hypertrophy, myocardial fibrosis, altered electrophysiological properties, and ischemia create the arrhythmogenic substrate. Risk factors include the male sex, concomitant aortic regurgitation, elevated filling pressures, and syncope. Diagnostic approaches range from standard electrocardiography to continuous monitoring and advanced imaging. Management centers on timely valve intervention, with medical therapy serving primarily as a bridge to AVR. Conclusions: Ventricular arrhythmias represent a consequence of valvular pathology in severe AS rather than an independent entity. Their presence signals advanced disease and a heightened risk for adverse outcomes. Multidisciplinary management with vigilant monitoring and prompt surgical referral is essential. Understanding this relationship enables clinicians to better identify high-risk patients requiring urgent intervention before life-threatening arrhythmic events occur.
- MeSH
- aortální stenóza * komplikace chirurgie patofyziologie MeSH
- chirurgická náhrada chlopně * metody MeSH
- komorová tachykardie etiologie MeSH
- lidé MeSH
- náhlá srdeční smrt etiologie MeSH
- rizikové faktory MeSH
- srdeční arytmie * etiologie patofyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH