Sample preparation
Dotaz
Zobrazit nápovědu
xxxii, 453 s. : il., tab. ; 25 cm
- MeSH
- metody pro přípravu analytických vzorků MeSH
- proteiny analýza MeSH
- proteomika metody MeSH
- Publikační typ
- monografie MeSH
- Konspekt
- Biologické vědy
- NLK Obory
- biologie
202 s.
Cílem předkládané práce je porovnat efekt systému Vector® (Dürr Dental, Německo) a klasické rotační techniky při preparaci kavit. Metodika: Experiment byl proveden na extrahovaných zubech. Celkem 20 extrahovaných premolárů a molárů bylo náhodně rozděleno do skupin po pěti. Na žvýkací ploše byly preparovány kavity standardním diamantovým brouskem a poté jemným diamantovaným brouskem systémem Vector® (Dürr Dental, Německo) a kombinací obou způsobů preparace. Vzorky byly po předchozím pokovení vyšetřeny v elektronovém mikroskopu. Byl změřen průměrný čas preparace. Výsledky: Stěny kavit preparované systémem Vector® byly méně drsné v porovnání s klasickou preparační technikou. Čas potřebný k preparaci byl u systému Vector® více než dvojnásobně delší v porovnání s rotační preparací.
The aim of the work was to compare the effect of the system Vector® (Dürr Dental, Germany) and classical rotation technique in the preparation of cavities. Methods: The experiment was performed on extracted teeth. A total of 20 extracted premolar teeth were randomly distributed to groups of 5 in each of them. At the masticatory surface the cavities were prepared by a standard diamond stone and subsequently with a fine diamond stone of the Vector® system (Dürr Dental, Germany) and a combination of both types of preparation. The samples were coated with metal and then examined by electron microscopy. The average period of preparation was measured. Results: The walls of the cavities prepared by the Vector® system were less rough as compared with the classical rotation preparation. The time period necessary for preparation with the Vector® system was more than twice as long as that of the rotation preparation.
- Klíčová slova
- Vector R, Vector Fluid Abrasive,
- MeSH
- diamant MeSH
- elektronová mikroskopie MeSH
- extrakce zubů MeSH
- moláry MeSH
- premolár MeSH
- preparace zubní kavity metody přístrojové vybavení MeSH
- ultrazvuková terapie metody přístrojové vybavení MeSH
- zubní kaz etiologie terapie MeSH
- zubní nástroje využití MeSH
There are various preparatory techniques for light microscopy permitting access to the inner structure of plant body and its development. Minute objects might be processed as whole-mount preparations, while voluminous ones should be separated into smaller pieces. Here we summarize some of the "classical" techniques to cut more voluminous objects into slices and access their inner structure either for simple anatomical analysis or for further processing (e.g., histochemistry, immunohistochemistry, in situ hybridization, enzyme histochemistry).
- MeSH
- barvení a značení metody MeSH
- fixace tkání metody MeSH
- histocytochemie metody MeSH
- histocytologické preparační techniky metody MeSH
- mikroskopie metody MeSH
- mikrotomie metody MeSH
- rostliny chemie ultrastruktura MeSH
- zalévání tkání do parafínu metody MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Direct matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) bacterial cell or lysate analysis appears to meet all the criteria required for a rapid and reliable analytical microorganism identification and taxonomical classification tool. Few-minute analytical procedure providing information extending up to sub-species level underlines the potential of the MALDI-MS profiling in comparison with other methods employed in the field. However, the quality of MALDI-MS profiles and consequently the performance of the method are influenced by numerous factors, which involve particular steps of the sample preparation procedure. This review is aimed at advances in development and optimization of the MALDI-MS profiling methodology. Approaches improving the quality of the MALDI-MS profiles and universal feasibility of the method are discussed.
Elevated levels of pteridines can indicate the activation of cellular immune system by certain diseases. No work dealing with the simultaneous determination of urinary neopterin, biopterin and their reduced forms has been published. Therefore, a new SPE-UHPLC-FD method for the analysis of these compounds has been developed. The main emphasis was put on the stability of dihydroforms during the sample processing and storage. As a stabilizing agent, dithiothreitol, at various concentrations, and various pH values (3.8-9.8) of working solutions were tested. Chromatographic separation was performed under HILIC isocratic conditions on BEH Amide column. The method was linear for the calibration standard solutions in the range of 10-10,000 ng/ml (dihydroforms) and 0.5-1000 ng/ml (oxidized forms), and for real samples in the range of 25-1000 ng/ml (dihydroforms) and 1-100 ng/ml (oxidized forms). The development of a new SPE sample preparation method was carried out on different types of sorbents (based on a mixed-mode cation exchange, porous graphitic carbon and a polymer comprising hydrophilic and hydrophobic components). Final validation was performed on a MCAX SPE column. Method accuracy ranged from 76.9 to 121.9%. The intra- and inter-day precision did not exceed 10.7%. The method provided high sensitivity for the use in routine clinical measurements of urine (LLOQ 1 ng/ml for oxidized forms and 25 ng/ml for dihydroforms). Average concentrations of biopterin, neopterin, and dihydrobiopterin found in urine of healthy persons were related to the mol of creatinine (66.8, 142.3, and 257.3 μmol/mol of creatinine, respectively) which corresponded to the literature data. The concentration of dihydroneopterin obtained using our method was 98.8 μmol/mol of creatinine.
PURPOSE: The goal of this study was to design an easy and simple protocol for platelet isolation and sample preparation for proteomic studies based on 2DE (IEF-SDS-PAGE) followed by Coomassie blue staining. EXPERIMENTAL DESIGN: Blood was collected by venipuncture into tubes coated with EDTA and platelet-rich plasma (PRP) was immediately obtained by centrifugation. PRP was stored refrigerated in closed Falcon tubes for 0, 1, 2, 3, 5, and 7 days and platelets were isolated by centrifugation. 2DE gels were stained with colloidal Coomassie blue stain and evaluated using the Progenesis SameSpots software. Spots that differed significantly in the gels of fresh and stored platelet samples were excised, digested with trypsin, and further analyzed using nanoLC-MS/MS. RESULTS: During the 7-day follow-up period, we found 20 spots that differed significantly (ANOVA p <0.05). During the first 2 days of PRP storage in test tubes, however, only nine spots significantly differed in all donors. In these spots, we identified 14 different proteins. CONCLUSIONS AND CLINICAL RELEVANCE: In conclusion, for proteome investigations, whenever it is not feasible to prepare washed platelets immediately after blood collection, the EDTA-anticoagulated PRP can be stored in test tubes at 4°C for up to 2 days for the platelet proteome investigation.
- MeSH
- 2D gelová elektroforéza MeSH
- agregace trombocytů účinky léků MeSH
- elektroforéza v polyakrylamidovém gelu metody MeSH
- kyselina arachidonová farmakologie MeSH
- lidé MeSH
- metody pro přípravu analytických vzorků * MeSH
- plazma bohatá na destičky metabolismus MeSH
- proteomika metody MeSH
- receptory trombinu metabolismus MeSH
- trombocyty metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Gas chromatography (GC) is a commonly used technique in amino acid analysis (AAA). However, one of the requirements of the application of GC for AAA is a need for the polar analytes to be converted into their volatile, thermally stable derivatives. In the last two decades, alkyl chloroformates have become attractive derivatization reagents. The reagents react immediately with most amino acid functional groups in aqueous matrices and the process can easily be coupled with liquid-liquid extraction of the resulting less-polar derivatives into immiscible organic phase. Here, we describe a simple protocol for in situ derivatization of amino acids with heptafluorobutyl chloroformate followed by subsequent chiral as well as nonchiral GC/mass spectrometric analysis on a respective nonpolar fused silica and an enantioselective Chirasil-Val capillary column.
- MeSH
- aminokyseliny analýza chemie MeSH
- chromatografie plynová metody MeSH
- fluorokarbony chemie MeSH
- formiáty chemie MeSH
- lidé MeSH
- metody pro přípravu analytických vzorků MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- referenční standardy MeSH
- stereoizomerie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH