The acidic tumor microenvironment (TME) of pancreatic cancer affects the physiological function of pancreatic stellate cells (PSCs), which in turn promotes cancer progression. Acid-sensing ion channel 1a (ASIC1a) is responsible for acidosis-related physiopathological processes. In this study, we investigated the effect of acid exposure on the activation and autophagy of PSCs, and the role of ASIC1a in these events. The results showed that acidic medium upregulated the expression of ASIC1a, induced PSCs activation and autophagy, which can be suppressed by inhibiting ASIC1a using PcTx1 or ASIC1a knockdown, suggesting that ASIC1a involves these two processes. In addition, the acid-induced activation of PSCs was impaired after the application of autophagy inhibitor alone or in combination with ASIC1a siRNA, meaning a connection between autophagy and activation. Collectively, our study provides evidence for the involvement of ASIC1a in the acid-caused PSCs activation, which may be associated with autophagy induction.
The aim of the study was to examine the potential impacts of bisphenol A (BPA) and its analogues BPB, BPF, and BPS on mice TM3 Leydig cells, with respect to basal cell viability parameters such as metabolic activity, cell membrane integrity, and lysosomal activity after 48-h exposure. In addition, monitoring of potential bisphenol ́s actions included evaluation of ROS production and gap junctional intercellular communication (GJIC) complemented by determination of testosterone secretion. Obtained results revealed significant inhibition in mitochondrial activity started at 10 microg/ml of bisphenols after 48-h exposure. Cell membrane integrity was significantly decreased at 5 microg/ml of BPA and BPF and 10, 25, and 50 microg/ml of BPA and BPS. The lysosomal activity was significantly affected at 10, 25, and 50 microg/ml of applied bisphenols. A significant overproduction of ROS was recorded mainly at 5 and 10 microg/ml of tested compounds. In addition, significant inhibition of GJIC was observed at 5 microg/ml of BPB followed by a progressive decline at higher applied doses. In the case of testosterone production, a significant decline was confirmed at 10, 25 and 50 microg/ml.
- MeSH
- benzhydrylové sloučeniny metabolismus MeSH
- endokrinní disruptory * farmakologie MeSH
- Leydigovy buňky * MeSH
- myši MeSH
- reaktivní formy kyslíku metabolismus MeSH
- sulfony farmakologie MeSH
- testosteron metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Inducible NO synthase (NOS II) was proposed to play an important role in salt resistance of Dahl salt-resistant (SR/Jr) rats. Its chronic inhibition by specific inhibitors was accompanied by blood pressure (BP) elevation in animals subjected to high salt intake. The aim of our study was to evaluate 1) whether such inhibitors affect BP and/or its particular components (sympathetic tone and NO-dependent vasodilation) only under the conditions of high salt intake, and 2) whether similar BP effects are elicited after systemic or intracerebroventricular (icv) application of these inhibitors. Wistar rats fed Altromin diet (0.45 % NaCl) and SR/Jr rats fed either a low-salt (LS, 0.3 % NaCl) or a high-salt (HS, 4 % NaCl) diet were studied. Aminoguanidine (AMG) and 2-amino-5,6-dihydro-6-methyl-4H-1,3-thiazine (AMT) were used as NOS II inhibitors. BP and its responses to acute blockade of renin-angiotensin system (captopril), sympathetic nervous system (pentolinium) and NO synthase (L-NAME) were measured in conscious cannulated rats. There were no significant changes of BP or its components in either Wistar rats or SR/Jr rats subjected to chronic inhibition of NOS II by peroral aminoguanidine administration (50 mg/kg/day for 4 weeks). This was true for SR/Jr rats fed either LS or HS diets. Furthermore, we have studied BP effects of chronic icv administration of both NOS II inhibitors in SR/Jr rats fed HS diet, but we failed to find any BP changes elicited by such treatment. In conclusion, inducible NO synthase does not participate in the resistance of SR/Jr rats to hypertensive effects of excess salt intake.
- MeSH
- chlorid sodný MeSH
- hypertenze * chemicky indukované MeSH
- krevní tlak fyziologie MeSH
- krysa rodu rattus MeSH
- kuchyňská sůl * MeSH
- oxid dusnatý MeSH
- potkani inbrední Dahl MeSH
- potkani Wistar MeSH
- synthasa oxidu dusnatého, typ II MeSH
- synthasa oxidu dusnatého MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Exercise can improve the cardiovascular health. However, the mechanism contributing to its beneficial effect on elderly patients with myocardial infarction is obscure. 20-month-old male Sprague-Dawley rats were used to establish myocardial infarction (MI) model by permanent ligation of the left anterior descending coronary artery (LAD) of the heart, followed by 4-week interval exercise training on a motor-driven rodent treadmill. The cardiac function, myocardial fibrosis, apoptosis, oxidative stress, and inflammatory responses were determined by using pressure transducer catheter, polygraph physiological data acquisition system, Masson's trichrome staining, and ELISA to evaluate the impact of post-MI exercise training on MI. Western blot were performed to detect the activation of AMPK/SIRT1/PGC-1alpha signaling in the hearts of aged rats. Exercise training significantly improved cardiac function and reduced the cardiac fibrosis. In infarcted heart, the apoptosis, oxidative stress, and inflammation were significantly reduced after 4-week exercise training. Mechanistically, AMPK/SIRT1/PGC-1alpha pathway was activated in the myocardial infarction area after exercise training, which might participate in the protection of cardiac function. Exercise training improves cardiac function in MI rats through reduction of apoptosis, oxidative stress, and inflammation, which may mediate by the activation of AMPK/SIRT1/PGC-1alpha signaling pathway.
- MeSH
- infarkt myokardu * metabolismus MeSH
- kondiční příprava zvířat * fyziologie MeSH
- krysa rodu rattus MeSH
- modely nemocí na zvířatech MeSH
- myokard metabolismus MeSH
- potkani Sprague-Dawley MeSH
- proteinkinasy aktivované AMP metabolismus MeSH
- sirtuin 1 metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Carnosine is a performance-enhancing food supplement with a potential to modulate muscle energy metabolism and toxic metabolites disposal. In this study we explored interrelations between carnosine supplementation (2 g/day, 12 weeks) induced effects on carnosine muscle loading and parallel changes in (i) muscle energy metabolism, (ii) serum albumin glycation and (iii) reactive carbonyl species sequestering in twelve (M/F=10/2) sedentary, overweight-to-obese (BMI: 30.0+/-2.7 kg/m2) adults (40.1+/-6.2 years). Muscle carnosine concentration (Proton Magnetic Resonance Spectroscopy; 1H-MRS), dynamics of muscle energy metabolism (Phosphorus Magnetic Resonance Spectroscopy; 31P-MRS), body composition (Magnetic Resonance Imaging; MRI), resting energy expenditure (indirect calorimetry), glucose tolerance (oGTT), habitual physical activity (accelerometers), serum carnosine and carnosinase-1 content/activity (ELISA), albumin glycation, urinary carnosine and carnosine-propanal concentration (mass spectrometry) were measured. Supplementation-induced increase in muscle carnosine was paralleled by improved dynamics of muscle post-exercise phosphocreatine recovery, decreased serum albumin glycation and enhanced urinary carnosine-propanal excretion (all p<0.05). Magnitude of supplementation-induced muscle carnosine accumulation was higher in individuals with lower baseline muscle carnosine, who had lower BMI, higher physical activity level, lower resting intramuscular pH, but similar muscle mass and dietary protein preference. Level of supplementation-induced increase in muscle carnosine correlated with reduction of protein glycation, increase in reactive carbonyl species sequestering, and acceleration of muscle post-exercise phosphocreatine recovery.
- MeSH
- dospělí MeSH
- fosfokreatin metabolismus MeSH
- karnosin * metabolismus farmakologie MeSH
- kosterní svaly metabolismus MeSH
- lidé MeSH
- Maillardova reakce MeSH
- potravní doplňky MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
During bone development, FasL acts not only through the traditional apoptotic mechanism regulating the amount of bone-resorbing osteoclasts, but there is also growing evidence about its effect on cell differentiation. Expression of osteoblastic factors was followed in non differentiated and differentiating primary calvarial cells obtained from FasL-deficient (gld) mice. The gld cells showed decreased expression of the key osteoblastic molecules osteocalcin (Ocn), osteopontin (Opn), and alkaline phosphatase (Alpl) in both groups. Notably, receptor activator of nuclear factor kappa-B ligand (Rankl) was unchanged in non-differentiated gld vs. wild type (wt) cells but decreased in differentiating gld cells. Osteoprotegerin (Opg) in the gld samples was increased in both groups. Opg vs. Rankl expression levels favored Opg in the case of non-differentiated cells but Rankl in differentiating ones. These results expand information on the involvement of FasL in non-apoptotic cell pathways related to osteoblastogenesis and consequently also osteoclastogenesis and pathologies such as osteoporosis.
- MeSH
- buněčná diferenciace MeSH
- glykoproteiny * metabolismus MeSH
- kosti a kostní tkáň metabolismus MeSH
- myši MeSH
- osteoblasty MeSH
- osteogeneze * MeSH
- osteoklasty metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
In the present study, we investigated the effect of acrylamide (ACR) exposure during pregnancy on the ovary of female adult offspring of two subsequent generations. Sixty-day-old Wistar albino female rats were given different doses of ACR (2.5 and 10 mg/kg/day) from day 6 of pregnancy until giving birth. Females from the first generation (AF1) were fed ad libitum, and thereafter, a subgroup was euthanized at 8 weeks of age and ovary samples were obtained. The remaining females were maintained until they reached sexual maturity (50 days old) and then treated in the same way as the previous generation to obtain the second generation of females (AF2). The histopathological examination indicated a high frequency of corpora lutea along with an increased number of antral follicles that reached the selectable stage mainly at a dose of 2.5 mg/kg/day. Interestingly, ACR exposure significantly increased the mRNA levels of CYP19 gene and its corresponding CYP19 protein expression in AF1 females. The TUNEL assay showed a significantly high rate of apoptosis in stromal cells except for dose of 2.5 mg/kg/day. However, in AF2 females, ACR exposure significantly increased the number of degenerating follicles and cysts while the number of growing follicles was reduced. Moreover, in both ACR-treated groups, estradiol-producing enzyme CYP19A gene and its corresponding protein were significantly reduced, and an excessive apoptosis was produced. We concluded that the ovarian condition of AF1 females had considerable similarity to the typical early perimenopausal stage, whereas that of AF2 females was similar to the late perimenopausal stage in women.
- MeSH
- akrylamid toxicita MeSH
- apoptóza MeSH
- aromatasa * genetika MeSH
- furylfuramid MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- poměr pohlaví MeSH
- potkani Wistar MeSH
- těhotenství MeSH
- zpožděný efekt prenatální expozice * chemicky indukované MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Asthma poses an increased risk for cardiovascular disorders, suggesting that allergy, which is an underlying process in asthma, causes atypical functioning of organs other than lungs. In a previous study in a guinea pig asthma model, we concluded that allergic sensitization increased aorta contractile responses to 5-HT. To further characterize these responses, here we explored the role of the 5-HT2 receptors family. We found that TCB-2 (5-HT2A agonist) and WAY161503 (5-HT2C agonist) induced aorta contractions resembling those elicited by 5-HT but less intense (~43 % and ~25 %, respectively). In these experiments, aortas from sensitized guinea pigs showed increased contractions to TCB-2, but not to WAY161503. In turn, MDL 100907 (5-HT2A antagonist) and RS-102221 (5-HT2C antagonist) caused a notably and a mild reduction of the 5-HT-induced contractions, respectively, with no differences seen between sensitized and non-sensitized tissues. BW723C86 (5-HT2B agonist) did not induce contractile responses and RS-127445 (5-HT2B antagonist) did not modify the contractile responses to 5-HT. In non-sensitized aortas, the pattern of protein expression of receptors was 5HT2B>5-HT2A=5-HT2C, which did not change in sensitized animals. In conclusion, we found that allergic sensitization increased the aorta contractile responses to 5-HT, partly mediated by enhanced responses of 5-HT2A receptors, which was unrelated to changes in the expression of these receptors.
- MeSH
- aorta MeSH
- bronchiální astma * MeSH
- morčata MeSH
- receptory serotoninové 5-HT2 MeSH
- receptory serotoninové metabolismus MeSH
- serotonin * MeSH
- zvířata MeSH
- Check Tag
- morčata MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Chronic hepatitis B (CHB) is caused by the Hepatitis B virus (HBV) and affects millions of people worldwide. Developing an effective CHB therapy requires using in vivo screening methods, such as mouse models reflecting CHB based on hydrodynamic delivery of plasmid vectors containing a replication-competent HBV genome. However, long-term expression of HBV proteins is accompanied by production of progeny virions, thereby requiring a Biosafety Level (BSL) 3 animal facility. In the present study, we introduced a point mutation in the START codon of the HBV polymerase to develop a mouse model reflecting chronic hepatitis B infection without formation of viral progeny. We induced the mouse model by hydrodynamic injection of adeno-associated virus plasmid vector (pAAV) and minicircle plasmid (pMC) constructs into C57Bl/6 and C3H/HeN mouse strains, monitoring HBV antigens and antibodies in blood by enzyme-linked immunosorbent assay and analyzing liver expression of HBV core antigen by immunohistology. Persisting expression of viral antigens over 140 days (study endpoint) was observed only in the C3H/HeN mouse strain when using pAAV/1.2HBV-A and pMC/1.0HBV-D with pre-C and pre-S recombination sites. In addition, pAAV/1.2HBV-A in C3H/HeN sustained HBV core antigen positivity up to the study endpoint in C3H/HeN mice. Moreover, introducing the point mutation in the START codon of polymerase effectively prevented the formation of viral progeny. Our study establishes an accessible and affordable experimental paradigm for developing a robust mouse model reflecting CHB suitable for preclinical testing of anti-HBV therapeutics in a BSL2 animal facility.
- MeSH
- chronická hepatitida B * genetika MeSH
- kodon iniciační MeSH
- modely nemocí na zvířatech MeSH
- mutace MeSH
- myši inbrední C3H MeSH
- myši MeSH
- virus hepatitidy B genetika MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Pyroptosis is a form of cell death associated with inflammation. In the maintenance of airway homeostasis, pyroptosis goes through activation and assembly of Inflammasome. The pyroptosis pathway is mediated by caspase which activates the pore-forming effect of substrate gasdermin family members. It eventually leads to lysis and release of the cell contents and then induces an inflammatory response. In this process, it participates in airway homeostasis regulation by affecting airway immunity, airway epithelial structure and airway microbiota. Therefore, we discussed the correlation between airway immunity, airway epithelial structure, airway microbiota and the mechanism of pyroptosis to describe the role of pyroptosis in airway homeostasis regulation which is of great significance for understanding the occurrence and treatment of airway inflammatory diseases.
- MeSH
- homeostáza MeSH
- inflamasomy * metabolismus MeSH
- kaspasy metabolismus MeSH
- lidé MeSH
- pyroptóza * fyziologie MeSH
- zánět MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH