BACKGROUND: Chronic lymphocytic leukemia (CLL) is a common adult leukemia characterized by the accumulation of neoplastic mature B cells in blood, bone marrow, lymph nodes, and spleen. The disease biology remains unresolved in many aspects, including the processes underlying the disease progression and relapses. However, studying CLL in vitro poses a considerable challenge due to its complexity and dependency on the microenvironment. Several approaches are utilized to overcome this issue, such as co-culture of CLL cells with other cell types, supplementing culture media with growth factors, or setting up a three-dimensional (3D) culture. Previous studies have shown that 3D cultures, compared to conventional ones, can lead to enhanced cell survival and altered gene expression. 3D cultures can also give valuable information while testing treatment response in vitro since they mimic the cell spatial organization more accurately than conventional culture. METHODS: In our study, we investigated the behavior of CLL cells in two types of material: (i) solid porous collagen scaffolds and (ii) gel composed of carboxymethyl cellulose and polyethylene glycol (CMC-PEG). We studied CLL cells' distribution, morphology, and viability in these materials by a transmitted-light and confocal microscopy. We also measured the metabolic activity of cultured cells. Additionally, the expression levels of MYC, VCAM1, MCL1, CXCR4, and CCL4 genes in CLL cells were studied by qPCR to observe whether our novel culture approaches lead to increased adhesion, lower apoptotic rates, or activation of cell signaling in relation to the enhanced contact with co-cultured cells. RESULTS: Both materials were biocompatible, translucent, and permeable, as assessed by metabolic assays, cell staining, and microscopy. While collagen scaffolds featured easy manipulation, washability, transferability, and biodegradability, CMC-PEG was advantageous for its easy preparation process and low variability in the number of accommodated cells. Both materials promoted cell-to-cell and cell-to-matrix interactions due to the scaffold structure and generation of cell aggregates. The metabolic activity of CLL cells cultured in CMC-PEG gel was similar to or higher than in conventional culture. Compared to the conventional culture, there was (i) a lower expression of VCAM1 in both materials, (ii) a higher expression of CCL4 in collagen scaffolds, and (iii) a lower expression of CXCR4 and MCL1 (transcript variant 2) in collagen scaffolds, while it was higher in a CMC-PEG gel. Hence, culture in the material can suppress the expression of a pro-apoptotic gene (MCL1 in collagen scaffolds) or replicate certain gene expression patterns attributed to CLL cells in lymphoid organs (low CXCR4, high CCL4 in collagen scaffolds) or blood (high CXCR4 in CMC-PEG).
- MeSH
- buněčné kultury metody MeSH
- chronická lymfatická leukemie * patologie metabolismus MeSH
- gely chemie MeSH
- kolagen * chemie farmakologie MeSH
- lidé MeSH
- polyethylenglykoly * chemie MeSH
- receptory CXCR4 metabolismus MeSH
- sodná sůl karboxymethylcelulosy * chemie farmakologie MeSH
- techniky 3D buněčné kultury metody MeSH
- tkáňové podpůrné struktury * chemie MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
The kinase LCK and CD4/CD8 co-receptors are crucial components of the T cell antigen receptor (TCR) signaling machinery, leading to key T cell fate decisions. Despite decades of research, the roles of CD4-LCK and CD8-LCK interactions in TCR triggering in vivo remain unknown. In this study, we created animal models expressing endogenous levels of modified LCK to resolve whether and how co-receptor-bound LCK drives TCR signaling. We demonstrated that the role of LCK depends on the co-receptor to which it is bound. The CD8-bound LCK is largely dispensable for antiviral and antitumor activity of cytotoxic T cells in mice; however, it facilitates CD8+ T cell responses to suboptimal antigens in a kinase-dependent manner. By contrast, the CD4-bound LCK is required for efficient development and function of helper T cells via a kinase-independent stabilization of surface CD4. Overall, our findings reveal the role of co-receptor-bound LCK in T cell biology, show that CD4- and CD8-bound LCK drive T cell development and effector immune responses using qualitatively different mechanisms and identify the co-receptor-LCK interactions as promising targets for immunomodulation.
- MeSH
- antigeny CD4 MeSH
- antigeny CD8 metabolismus MeSH
- cytotoxické T-lymfocyty * metabolismus MeSH
- myši MeSH
- receptory antigenů T-buněk metabolismus MeSH
- signální transdukce MeSH
- tyrosinkinasa p56(lck), specifická pro lymfocyty * metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Increasing evidence points to host genetics as a factor in COVID-19 prevalence and outcome. CCR5 is a receptor for proinflammatory chemokines that are involved in host responses, especially to viruses. The CCR5-delta32 minor allele is an interesting variant, given the role of CCR5 in some viral infections, particularly HIV-1. Recent studies of the impact of CCR5-delta32 on COVID-19 risk and severity have yielded contradictory results. This ecologic study shows that the CCR5-delta32 allelic frequency in a European population was significantly negatively correlated with the number of COVID-19 cases (p=0.035) and deaths (p=0.006) during the second pandemic wave. These results suggest that CCR5-delta32 may be protective against SARS-CoV-2 infection, as it is against HIV infection, and could be predictive of COVID-19 risk and severity. Further studies based on samples from populations of different genetic backgrounds are needed to validate these statistically obtained findings.
- MeSH
- COVID-19 genetika imunologie mortalita virologie MeSH
- fenotyp MeSH
- frekvence genu MeSH
- genetická predispozice k nemoci MeSH
- interakce hostitele a patogenu MeSH
- lidé MeSH
- mutace * MeSH
- ochranné faktory MeSH
- prevalence MeSH
- receptory CCR5 genetika MeSH
- rizikové faktory MeSH
- SARS-CoV-2 imunologie patogenita MeSH
- stupeň závažnosti nemoci MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Out of three genotypes of Encephalitozoon cuniculi (I-III) available for experimental studies, E. cuniculi genotype I remains the less characterized. This study describes for the first time individual phases of microsporidiosis caused by E. cuniculi genotype I and efficacy of albendazole treatment in immunocompetent BALB/c and C57Bl/6 mice and immunodeficient SCID, CD4-/- and CD8-/- mice using molecular detection and quantification methods. We demonstrate asymptomatic infection despite an intense dissemination of microsporidia into most organs within the first weeks post infection, followed by a chronic infection characterized by significant microsporidia persistence in immunocompetent, CD4-/- and CD8-/- mice and a lethal outcome for SCID mice. Albendazole application led to loss E. cuniculi genotype I infection in immunocompetent mouse strains, decreased spore burden by half in CD4-/- and CD8-/- mice, and prolongation of survival of SCID mice. These results showed Encephalitozoon cuniculi genotype I infection extend and albendazole sensitivity was comparable to E. cuniculi genotype II, but the infection onset speed and mortality rate was similar to E. cuniculi genotype III. These imply that differences in the course of infection and the response to treatment depend not only on immunological status of the host, but also on the genotype causing the infection.
- MeSH
- albendazol aplikace a dávkování MeSH
- antigeny CD4 genetika MeSH
- antigeny CD8 genetika MeSH
- antiinfekční látky aplikace a dávkování MeSH
- Encephalitozoon cuniculi klasifikace genetika MeSH
- encephalitozoonóza imunologie parazitologie MeSH
- genotyp MeSH
- imunokompetence MeSH
- kvantitativní polymerázová řetězová reakce MeSH
- myši inbrední BALB C MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši SCID MeSH
- myši MeSH
- polymerázová řetězová reakce MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease (COVID-19), has spread widely around the globe. Significant inter-individual differences have been observed during the course of the infection, which suggests that genetic susceptibility may be a contributing factor. CC chemokine receptor 5 (CCR5), which acts as a co-receptor for the entry of HIV-1 into cells, is promising candidate whose can have an influence on SARS-CoV-2 infection. A genetic mutation known as CCR5Delta32, consisting of a 32-nucleotide deletion, encodes a truncated protein that protects homozygous carriers of the deletion from HIV-1 infection. Similarly, inhibition of CCR5 seems to be protective against COVID-19. In our study, we successfully genotyped 416 first-wave SARS-CoV-2-positive infection survivors (164 asymptomatic and 252 symptomatic) for CCR5?32, comparing them with a population based sample of 2,404 subjects. We found the highest number (P=0.03) of CCR5Delta32 carriers in SARS-CoV-2-positive/COVID-19-asympto-matic subjects (23.8 %) and the lowest number in SARS-CoV-2-positive/COVID-19-symptomatic patients (16.7 %), with frequency in the control population in the middle (21.0 %). We conclude that the CCR5?32 I/D polymorphism may have the potential to predict the severity of SARS-CoV-2 infection.
- MeSH
- COVID-19 diagnóza genetika virologie MeSH
- fenotyp MeSH
- frekvence genu MeSH
- genetická predispozice k nemoci MeSH
- genetické asociační studie MeSH
- hodnocení rizik MeSH
- lidé MeSH
- ochranné faktory MeSH
- receptory CCR5 genetika MeSH
- rizikové faktory MeSH
- sekvenční delece * MeSH
- studie případů a kontrol MeSH
- stupeň závažnosti nemoci MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
WW domain binding protein 1-like (WBP1L), also known as outcome predictor of acute leukaemia 1 (OPAL1), is a transmembrane adaptor protein, expression of which correlates with ETV6-RUNX1 (t(12;21)(p13;q22)) translocation and favourable prognosis in childhood leukaemia. It has a broad expression pattern in haematopoietic and in non-haematopoietic cells. However, its physiological function has been unknown. Here, we show that WBP1L negatively regulates signalling through a critical chemokine receptor CXCR4 in multiple leucocyte subsets and cell lines. We also show that WBP1L interacts with NEDD4-family ubiquitin ligases and regulates CXCR4 ubiquitination and expression. Moreover, analysis of Wbp1l-deficient mice revealed alterations in B cell development and enhanced efficiency of bone marrow cell transplantation. Collectively, our data show that WBP1L is a novel regulator of CXCR4 signalling and haematopoiesis.
- MeSH
- adaptorové proteiny signální transdukční metabolismus MeSH
- glykoproteiny metabolismus MeSH
- HEK293 buňky MeSH
- hematopoetické kmenové buňky metabolismus MeSH
- hematopoéza * MeSH
- homeostáza MeSH
- lidé MeSH
- lipoylace MeSH
- malá interferující RNA metabolismus MeSH
- membránové proteiny genetika metabolismus MeSH
- myši inbrední C57BL MeSH
- receptory CXCR4 metabolismus MeSH
- signální transdukce * MeSH
- ubikvitinace MeSH
- ubikvitinligasy metabolismus MeSH
- vazba proteinů MeSH
- zárodečné buňky metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Following nerve injury, disintegrated axonal mitochondria distal to the injury site release mitochondrial formylated peptides and DNA that can induce activation and inflammatory profiling of Schwann cells via formyl peptide receptor 2 (Fpr2) and toll-like receptor 9 (TLR9), respectively. We studied RT4 schwannoma cells to investigate the regulation of Fpr2 and TLR9 after stimulation with fMLF as a prototypical formylated peptide. RT4 cells were treated with fMLF at various concentrations and times with and without pretreatment with inhibitors (chloroquine for activated TLR9, PBP10 for Fpr2). Western blots of Fpr2, TLR9, p-p38, p-NFκB, and IL-6 were compared in relation to inflammatory profiling of RT4 cells and chemokine receptors (CCR2, CXCR4) as potential co-receptors of Fpr2. fMLF stimulation upregulated Fpr2 in RT4 cells at low concentrations (10 nM and 100 nM) but higher concentrations were required (10 µM and 50 µM) when the cells were pretreated with an activated TLR9 inhibitor. Moreover, the higher concentrations of fMLF could modulate TLR9 and inflammatory markers. Upregulation of Fpr2 triggered by 10 nM and 100 nM fMLF coincided with higher levels of chemokine receptors (CCR2, CXCR4) and PKCβ. Treating RT4 cells with fMLF, as an in vitro model of Schwann cells, uncovered Schwann cells' complex responses to molecular patterns of release from injured axonal mitochondria.
- MeSH
- chlorochin farmakologie MeSH
- krysa rodu rattus MeSH
- N-formylmethionin-leucyl-fenylalanin farmakologie MeSH
- nádorové buněčné linie MeSH
- neurilemom metabolismus patologie MeSH
- receptory CCR2 genetika metabolismus MeSH
- receptory CXCR4 genetika metabolismus MeSH
- receptory pro formylované peptidy antagonisté a inhibitory genetika metabolismus MeSH
- Schwannovy buňky cytologie účinky léků metabolismus MeSH
- signální transdukce účinky léků MeSH
- toll-like receptor 9 antagonisté a inhibitory genetika metabolismus MeSH
- upregulace účinky léků MeSH
- zánět metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Encephalitozoon cuniculi genotype III disseminated intensively into most of the organs in all strains of mice, followed by a chronic infection with massive microsporidia persistence in immunodeficient mice and a partial decrease in C57Bl/6 mice. Treatment with 0.2 mg Albendazole/mouse/day temporarily reduces the number of affected organs in immunocompetent C57Bl/6 mice, but not in CD4-/- and CD8-/- mice. The application of medication temporarily decreased the spore burden at least by one order of magnitude in all groups. These results demonstrate that the E. cuniculi genotype III infection had a progressive course and surprisingly, Albendazole treatment had only a minimal effect. The E. cuniculi genotype III spore burden in individual organs reached up to 108 or 109 in immunocompetent or immunodeficient mice, respectively; however, these mice did not demonstrate any obvious clinical signs of microsporidiosis, and the immunodeficient mice survived longer. Our findings clearly show that the survival of mice does not correspond to spore burden, which provides new insight into latent microsporidiosis from an epidemiological point of view.
- MeSH
- albendazol terapeutické užití MeSH
- antigeny CD4 genetika MeSH
- antigeny CD8 genetika MeSH
- Cercopithecus aethiops MeSH
- Encephalitozoon cuniculi genetika MeSH
- encephalitozoonóza farmakoterapie mikrobiologie patologie MeSH
- genotyp * MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- Vero buňky MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Of four genotypes of Encephalitozoon cuniculi, E. cuniculi genotype II is considered to represent a parasite that occurs in many host species in a latent asymptomatic form, whereas E. cuniculi genotype III seems to be more aggressive, and infections caused by this strain can lead to the death of even immunocompetent hosts. Although albendazole has been considered suitable for treatment of Encephalitozoon species, its failure in control of E. cuniculi genotype III infection has been reported. This study determined the effect of a 100× recommended daily dose of albendazole on an Encephalitozoon cuniculi genotype III course of infection in immunocompetent and immunodeficient mice and compared the results with those from experiments performed with a lower dose of albendazole and E. cuniculi genotype II. The administration of the regular dose of abendazole during the acute phase of infection reduced the number of affected organs in all strains of mice and absolute counts of spores in screened organs. However, the effect on genotype III was minor. Surprisingly, no substantial effect was recorded after the use of a 100× dose of albendazole, with larger reductions seen only in the number of affected organs and absolute counts of spores in all strains of mice, implying variations in albendazole resistance between these Encephalitozoon cuniculi genotypes. These results imply that differences in the course of infection and the response to treatment depend not only on the immunological status of the host but also on the genotype causing the infection. Understanding how microsporidia survive in hosts despite targeted antimicrosporidial treatment could significantly contribute to research related to human health.
- MeSH
- albendazol aplikace a dávkování farmakologie MeSH
- antifungální látky aplikace a dávkování farmakologie MeSH
- antigeny CD4 genetika MeSH
- antigeny CD8 genetika MeSH
- buněčné linie MeSH
- Cercopithecus aethiops MeSH
- Encephalitozoon cuniculi účinky léků genetika izolace a purifikace MeSH
- encephalitozoonóza farmakoterapie MeSH
- genotyp MeSH
- hostitel s imunodeficiencí imunologie MeSH
- mikrobiální testy citlivosti MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední BALB C MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši SCID MeSH
- myši MeSH
- počet mikrobiálních kolonií MeSH
- Vero buňky MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Long-term outcomes after face transplantation are rarely reported in the scientific literature. Here we present outcome data of a partial face allograft recipient 10 years after transplantation. METHODS: Medical records were reviewed for functional and psychosocial outcomes as well as complications. Histopathologic analyses of autopsy tissues and characterization of skin immune cells were performed. RESULTS: The patient retained long-term motor and sensory function, though with a noticeable drop in sensory function after year 5. Social reintegration of the patient was marked by reconnection with his family and participation in public social activities. Immunosuppressive therapy consisted of tacrolimus (target levels 6-8 ng/mL after the first year), mycophenolate, and prednisone, while steroids were completely weaned between years 1 and 7. One acute cellular rejection episode of grade II or higher occurred on average per year and led to chronic skin changes (papillary dermal sclerosis with superficial hyalinization, epidermal thinning with loss of rete ridges, perieccrine fibrosis), but the allograft vessels, muscles, adipose tissue, and bone were spared. Allograft skin was characterized by increased number of CD4+ TNF-α/IL17A producing T-cells as compared with native skin. Long-term kidney function was maintained at 60 mL/min estimated glomerular filtration rate. Unfortunately, the preexisting hepatitis C virus infection with liver cirrhosis was resistant to 3 treatments with new direct-acting antivirals and eventually hepatocellular carcinoma developed, causing the patient's death 10 years after transplantation. CONCLUSION: This report suggests that face transplants can maintain their function for at least 10 years. Chronic skin changes can occur independently of allograft vasculopathy.
- MeSH
- alografty MeSH
- antigeny CD4 metabolismus MeSH
- chronická hepatitida C komplikace MeSH
- hepatocelulární karcinom virologie MeSH
- hodnoty glomerulární filtrace MeSH
- imunosupresiva terapeutické užití MeSH
- interleukin-17 metabolismus MeSH
- kůže metabolismus patologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory jater virologie MeSH
- následné studie MeSH
- příjemce transplantátu * MeSH
- T-lymfocyty metabolismus MeSH
- TNF-alfa metabolismus MeSH
- transplantace obličeje * MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH