Congenital heart disease is the most common type of birth defect, accounting for one-third of all congenital anomalies. Using whole-exome sequencing of 2718 patients with congenital heart disease and a search in GeneMatcher, we identified 30 patients from 21 unrelated families of different ancestries with biallelic phospholipase D1 (PLD1) variants who presented predominantly with congenital cardiac valve defects. We also associated recessive PLD1 variants with isolated neonatal cardiomyopathy. Furthermore, we established that p.I668F is a founder variant among Ashkenazi Jews (allele frequency of ~2%) and describe the phenotypic spectrum of PLD1-associated congenital heart defects. PLD1 missense variants were overrepresented in regions of the protein critical for catalytic activity, and, correspondingly, we observed a strong reduction in enzymatic activity for most of the mutant proteins in an enzymatic assay. Finally, we demonstrate that PLD1 inhibition decreased endothelial-mesenchymal transition, an established pivotal early step in valvulogenesis. In conclusion, our study provides a more detailed understanding of disease mechanisms and phenotypic expression associated with PLD1 loss of function.
- MeSH
- Alleles * MeSH
- Phospholipase D * genetics metabolism MeSH
- Humans MeSH
- Loss of Function Mutation * MeSH
- Heart Valve Diseases * enzymology genetics MeSH
- Heart Defects, Congenital * enzymology genetics MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
ZEB1 loss-of-function (LoF) alleles are known to cause a rare autosomal dominant disorder-posterior polymorphous corneal dystrophy type 3 (PPCD3). To date, 50 pathogenic LoF variants have been identified as disease-causing and familial studies have indicated that the PPCD3 phenotype is penetrant in approximately 95% of carriers. In this study, we interrogated in-house exomes (n = 3616) and genomes (n = 88) for the presence of putative heterozygous LoF variants in ZEB1. Next, we performed detailed phenotyping in a father and his son who carried a novel LoF c.1279C>T; p.(Glu427*) variant in ZEB1 (NM_030751.6) absent from the gnomAD v.2.1.1 dataset. Ocular examination of the two subjects did not show any abnormalities characteristic of PPCD3. GnomAD (n = 141,456 subjects) was also interrogated for LoF ZEB1 variants, notably 8 distinct heterozygous changes presumed to lead to ZEB1 haploinsufficiency, not reported to be associated with PPCD3, have been identified. The NM_030751.6 transcript has a pLI score ≥ 0.99, indicating extreme intolerance to haploinsufficiency. In conclusion, ZEB1 LoF variants are present in a general population at an extremely low frequency. As PPCD3 can be asymptomatic, the true penetrance of ZEB1 LoF variants remains currently unknown but is likely to be lower than estimated by the familial led approaches adopted to date.
- MeSH
- Corneal Dystrophies, Hereditary genetics pathology MeSH
- Haploinsufficiency MeSH
- Heterozygote MeSH
- Cells, Cultured MeSH
- Middle Aged MeSH
- Humans MeSH
- Loss of Function Mutation * MeSH
- Penetrance * MeSH
- Pedigree MeSH
- Zinc Finger E-box-Binding Homeobox 1 genetics metabolism MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
- Research Support, Non-U.S. Gov't MeSH
TDP2 encodes a 5'-tyrosyl DNA phosphodiesterase required for the efficient repair of double-strand breaks (DSBs) induced by the abortive activity of DNA topoisomerase II (TOP2). To date, only three homozygous variants in TDP2 have been reported in six patients from four unrelated pedigrees with spinocerebellar ataxia 23 (SCAR23). By whole-exome sequencing, we identified a novel TDP2 splice-site variant (c.636 + 3_636 + 6del) in two Italian siblings (aged 40 and 45) showing progressive ataxia, intellectual disability, speech delay, refractory seizures, and various physical anomalies. The variant caused exon 5 skipping with consequent nonsense-mediated mRNA decay and defective repair of TOP2-induced DSBs, as demonstrated by the functional assays on the patients' fibroblasts. Our findings further demonstrate the pathogenic role of TDP2 biallelic loss-of-function variants in SCAR23 pathogenesis. Considering the age of our patients, the oldest reported to date, and their extensive follow-up, our study delineates in more detail the clinical phenotype related to the loss of TDP2 activity.
- MeSH
- DNA-Binding Proteins genetics MeSH
- Adult MeSH
- Phosphoric Diester Hydrolases genetics MeSH
- Genes, Recessive genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- Intellectual Disability genetics pathology MeSH
- Loss of Function Mutation genetics MeSH
- Spinocerebellar Ataxias genetics physiopathology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
Inherited peripheral neuropathies are a genetically heterogeneous group of disorders characterized by distal muscle weakness and sensory loss. Mutations in genes encoding aminoacyl-tRNA synthetases have been implicated in peripheral neuropathies, suggesting that these tRNA charging enzymes are uniquely important for the peripheral nerve. Recently, a mutation in histidyl-tRNA synthetase (HARS) was identified in a single patient with a late-onset, sensory-predominant peripheral neuropathy; however, the genetic evidence was lacking, making the significance of the finding unclear. Here, we present clinical, genetic, and functional data that implicate HARS mutations in inherited peripheral neuropathies. The associated phenotypic spectrum is broad and encompasses axonal and demyelinating motor and sensory neuropathies, including four young patients presenting with pure motor axonal neuropathy. Genome-wide linkage studies in combination with whole-exome and conventional sequencing revealed four distinct and previously unreported heterozygous HARS mutations segregating with autosomal dominant peripheral neuropathy in four unrelated families (p.Thr132Ile, p.Pro134His, p.Asp175Glu and p.Asp364Tyr). All mutations cause a loss of function in yeast complementation assays, and p.Asp364Tyr is dominantly neurotoxic in a Caenorhabditis elegans model. This study demonstrates the role of HARS mutations in peripheral neuropathy and expands the genetic and clinical spectrum of aminoacyl-tRNA synthetase-related human disease.
- MeSH
- Charcot-Marie-Tooth Disease genetics MeSH
- Hereditary Sensory and Autonomic Neuropathies genetics MeSH
- Genetic Linkage genetics MeSH
- Histidine-tRNA Ligase genetics MeSH
- Humans MeSH
- Mutation genetics MeSH
- Peripheral Nervous System Diseases genetics MeSH
- Pedigree MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
Histiocytoses are inflammatory myeloid neoplasms often driven by somatic activating mutations in mitogen-activated protein kinase (MAPK) cascade genes. H syndrome is an inflammatory genetic disorder caused by germ line loss-of-function mutations in SLC29A3, encoding the lysosomal equilibrative nucleoside transporter 3 (ENT3). Patients with H syndrome are predisposed to develop histiocytosis, yet the mechanism is unclear. Here, through phenotypic, molecular, and functional analysis of primary cells from a cohort of patients with H syndrome, we reveal the molecular pathway leading to histiocytosis and inflammation in this genetic disorder. We show that loss of function of ENT3 activates nucleoside-sensing toll-like receptors (TLR) and downstream MAPK signaling, inducing cytokine secretion and inflammation. Importantly, MEK inhibitor therapy led to resolution of histiocytosis and inflammation in a patient with H syndrome. These results demonstrate a yet-unrecognized link between a defect in a lysosomal transporter and pathological activation of MAPK signaling, establishing a novel pathway leading to histiocytosis and inflammation.
- MeSH
- Histiocytosis * genetics pathology MeSH
- Humans MeSH
- Mitogen-Activated Protein Kinases * MeSH
- Mutation MeSH
- Nucleoside Transport Proteins genetics metabolism MeSH
- Toll-Like Receptors MeSH
- Inflammation genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The most common histological subtypes of cutaneous melanoma include superficial spreading and nodular melanoma. However, the spectrum of somatic mutations developed in those lesions and all potential druggable targets have not yet been fully elucidated. We present the results of a sequence capture NGS analysis of 114 primary nodular and superficial spreading melanomas identifying driver mutations using biostatistical, immunohistochemical and/or functional approach. The spectrum and frequency of pathogenic or likely pathogenic variants were identified across 54 evaluated genes, including 59 novel mutations, and the newly identified TP53 loss-of-function mutations p.(L194P) and p.(R280K). Frequently mutated genes most commonly affected the MAPK pathway, followed by chromatin remodeling, and cell cycle regulation. Frequent aberrations were also detected in the genes coding for proteins involved in DNA repair and the regulation and modification of cellular tight junctions. Furthermore, relatively frequent mutations were described in KDR and MET, which represent potential clinically important targets. Those results suggest that with the development of new therapeutic possibilities, not only BRAF testing, but complex molecular testing of cutaneous melanoma may become an integral part of the decision process concerning the treatment of patients with melanoma.
- MeSH
- Cell Cycle genetics MeSH
- Adult MeSH
- Gene Frequency genetics MeSH
- Genetic Predisposition to Disease genetics MeSH
- Middle Aged MeSH
- Humans MeSH
- MAP Kinase Signaling System genetics MeSH
- Melanoma genetics pathology MeSH
- Young Adult MeSH
- Loss of Function Mutation genetics MeSH
- Biomarkers, Tumor genetics MeSH
- Tumor Suppressor Protein p53 genetics MeSH
- Skin Neoplasms genetics pathology MeSH
- DNA Repair genetics MeSH
- Proto-Oncogene Proteins B-raf genetics MeSH
- Chromatin Assembly and Disassembly genetics MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Tight Junctions genetics MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Sco1 and Sco2 are mitochondrial copper-binding proteins involved in the biogenesis of the Cu(A) site in the cytochrome c oxidase (CcO) subunit Cox2 and in the maintenance of cellular copper homeostasis. Human Surf1 is a CcO assembly factor with an important but poorly characterized role in CcO biogenesis. Here, we analyzed the impact on CcO assembly and tissue copper levels of a G132S mutation in the juxtamembrane region of SCO1 metallochaperone associated with early onset hypertrophic cardiomyopathy, encephalopathy, hypotonia, and hepatopathy, assessed the total copper content of various SURF1 and SCO2-deficient tissues, and investigated the possible physical association between CcO and Sco1. The steady-state level of mutant Sco1 was severely decreased in the muscle mitochondria of the SCO1 patient, indicating compromised stability and thus loss of function of the protein. Unlike the wild-type variant, residual mutant Sco1 appeared to migrate exclusively in the monomeric form on blue native gels. Both the activity and content of CcO were reduced in the patient's muscle to approximately 10-20% of control values. SCO1-deficient mitochondria showed accumulation of two Cox2 subcomplexes, suggesting that Sco1 is very likely responsible for a different posttranslational aspect of Cox2 maturation than Sco2. Intriguingly, the various SURF1-deficient samples analyzed showed a tissue-specific copper deficiency similar to that of SCO-deficient samples, suggesting a role for Surf1 in copper homeostasis regulation. Finally, both blue native immunoblot analysis and coimmunoprecipitation revealed that a fraction of Sco1 physically associates with the CcO complex in human muscle mitochondria, suggesting a possible direct relationship between CcO and the regulation of cellular copper homeostasis.
- MeSH
- Cell Line MeSH
- Fibroblasts enzymology pathology MeSH
- Financing, Organized MeSH
- Homeostasis physiology MeSH
- Liver enzymology pathology MeSH
- Myocytes, Cardiac enzymology pathology MeSH
- Infant MeSH
- Skin cytology MeSH
- Kidney cytology MeSH
- Humans MeSH
- Copper metabolism deficiency MeSH
- Membrane Proteins genetics metabolism MeSH
- Mitochondrial Proteins genetics metabolism MeSH
- Mitochondria physiology MeSH
- Electron Transport Complex IV metabolism MeSH
- Fetal Growth Retardation genetics metabolism pathology MeSH
- Carrier Proteins genetics metabolism MeSH
- Check Tag
- Infant MeSH
- Humans MeSH
- Female MeSH
Both gain- and loss-of-function mutations have recently implicated HCFC1 in neurodevelopmental disorders. Here, we extend our previous HCFC1 over-expression studies by employing short hairpin RNA to reduce the expression of Hcfc1 in embryonic neural cells. We show that in contrast to over-expression, loss of Hcfc1 favoured proliferation of neural progenitor cells at the expense of differentiation and promoted axonal growth of post-mitotic neurons. To further support the involvement of HCFC1 in neurological disorders, we report two novel HCFC1 missense variants found in individuals with intellectual disability (ID). One of these variants, together with three previously reported HCFC1 missense variants of unknown pathogenicity, were functionally assessed using multiple cell-based assays. We show that three out of the four variants tested result in a partial loss of HCFC1 function. While over-expression of the wild-type HCFC1 caused reduction in HEK293T cell proliferation and axonal growth of neurons, these effects were alleviated upon over-expression of three of the four HCFC1 variants tested. One of these partial loss-of-function variants disrupted a nuclear localization sequence and the resulting protein displayed reduced ability to localize to the cell nucleus. The other two variants displayed negative effects on the expression of the HCFC1 target gene MMACHC, which is responsible for the metabolism of cobalamin, suggesting that these individuals may also be susceptible to cobalamin deficiency. Together, our work identifies plausible cellular consequences of missense HCFC1 variants and identifies likely and relevant disease mechanisms that converge on embryonic stages of brain development.
- MeSH
- Active Transport, Cell Nucleus MeSH
- Cell Differentiation genetics MeSH
- Gene Expression MeSH
- Host Cell Factor C1 chemistry genetics metabolism MeSH
- HEK293 Cells MeSH
- Cells, Cultured MeSH
- Humans MeSH
- RNA, Small Interfering genetics MeSH
- Intellectual Disability genetics MeSH
- Brain cytology embryology MeSH
- Mutation * MeSH
- Mice MeSH
- Neural Stem Cells cytology metabolism MeSH
- Cell Proliferation MeSH
- RNA Interference MeSH
- Pedigree MeSH
- Amino Acid Sequence MeSH
- Amino Acid Substitution MeSH
- Transduction, Genetic MeSH
- Carrier Proteins genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH