Juxtaglomerular cell tumor (JxGCT) is a rare type of renal neoplasm demonstrating morphologic overlap with some mesenchymal tumors such as glomus tumor (GT) and solitary fibrous tumor (SFT). Its oncogenic drivers remain elusive, and only a few cases have been analyzed with modern molecular techniques. In prior studies, loss of chromosomes 9 and 11 appeared to be recurrent. Recently, whole-genome analysis identified alterations involving genes of MAPK-RAS pathway in a subset, but no major pathogenic alterations have been discovered in prior whole transcriptome analyses. Considering the limited understanding of the molecular features of JxGCTs, we sought to assess a collaborative series with a multiomic approach to further define the molecular characteristics of this entity. Fifteen tumors morphologically compatible with JxGCTs were evaluated using immunohistochemistry for renin, single-nucleotide polymorphism array (SNP), low-pass whole-genome sequencing, and RNA sequencing (fusion assay). In addition, methylation analysis comparing JxGCT, GT, and SFT was performed. All cases tested with renin (n=11) showed positive staining. Multiple chromosomal abnormalities were identified in all cases analyzed (n=8), with gains of chromosomes 1p, 10, 17, and 19 and losses of chromosomes 9, 11, and 21 being recurrent. A pathogenic HRAS mutation was identified in one case as part of the SNP array analysis. Thirteen tumors were analyzed by RNA sequencing, with 2 revealing in-frame gene fusions: TFG::GPR128 (interpreted as stochastic) and NAB2::STAT6 . The latter, originally diagnosed as JxGCT, was reclassified as SFT and excluded from the series. No fusions were detected in the remaining 11 cases; of note, no case harbored NOTCH fusions previously described in GT. Genomic methylation analysis showed that JxGCT, GT, and SFT form separate clusters, confirming that JxGCT represents a distinct entity (ie, different from GT). The results of our study show that JxGCTs are a distinct tumor type with a recurrent pattern of chromosomal imbalances that may play a role in oncogenesis, with MAPK-RAS pathway activation being likely a driver in a relatively small subset.
- MeSH
- Adult MeSH
- Epigenesis, Genetic MeSH
- Epigenomics MeSH
- Gene Fusion * MeSH
- Genetic Predisposition to Disease MeSH
- Genomics MeSH
- Immunohistochemistry MeSH
- Polymorphism, Single Nucleotide MeSH
- Juxtaglomerular Apparatus pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- DNA Methylation MeSH
- Biomarkers, Tumor * genetics MeSH
- Kidney Neoplasms * genetics pathology chemistry MeSH
- Whole Genome Sequencing MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
The Global Alliance for Genomics and Health (GA4GH) Phenopacket Schema was released in 2022 and approved by ISO as a standard for sharing clinical and genomic information about an individual, including phenotypic descriptions, numerical measurements, genetic information, diagnoses, and treatments. A phenopacket can be used as an input file for software that supports phenotype-driven genomic diagnostics and for algorithms that facilitate patient classification and stratification for identifying new diseases and treatments. There has been a great need for a collection of phenopackets to test software pipelines and algorithms. Here, we present Phenopacket Store. Phenopacket Store v.0.1.19 includes 6,668 phenopackets representing 475 Mendelian and chromosomal diseases associated with 423 genes and 3,834 unique pathogenic alleles curated from 959 different publications. This represents the first large-scale collection of case-level, standardized phenotypic information derived from case reports in the literature with detailed descriptions of the clinical data and will be useful for many purposes, including the development and testing of software for prioritizing genes and diseases in diagnostic genomics, machine learning analysis of clinical phenotype data, patient stratification, and genotype-phenotype correlations. This corpus also provides best-practice examples for curating literature-derived data using the GA4GH Phenopacket Schema.
- MeSH
- Algorithms MeSH
- Databases, Genetic MeSH
- Phenotype * MeSH
- Genomics * methods MeSH
- Humans MeSH
- Software * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
In the last two decades, a school of thought emerged that perceives male reproductive health, testicular function, and sperm output as a sentry for general, somatic health. Large-scale epidemiologic studies have already linked the reduced sperm count to increased risk of chronic somatic disease (e.g., cancer, cardiovascular, neurological and bone diseases), yet most of these studies have not taken full advantage of advanced andrological analysis. Altered proteostasis, i.e., the disbalance between protein synthesis and turnover, is a common denominator of many diseases, including but not limited to cancer and neurodegenerative diseases. This chapter introduces the concept of cellular proteostasis as a measure of sperm structural and functional integrity and an endpoint of varied impacts on spermiogenesis and sperm maturation, including heritability, general health, lifestyle, and occupational and environmental reprotoxic exposure. Special consideration is given to small molecule protein modifiers, sperm-binding seminal plasma proteins, zinc-interacting proteins, and redox proteins responsible for the maintenance of protein structure and the protection of spermatozoa from oxidative damage. While the main focus is on human male infertility, serious consideration is given to relevant animal models, and in particular to male food animals with extensive records of fertility from artificial insemination services. Altogether, the proteostatic biomarker discovery and validation studies set the stage for the integration of proteomics of sperm proteostasis with genomic and high throughput phenomic approaches to benefit both human and animal reproductive medicine.
- MeSH
- Fertility * physiology MeSH
- Proteostasis * physiology MeSH
- Humans MeSH
- Infertility, Male * metabolism genetics pathology physiopathology MeSH
- Spermatogenesis * MeSH
- Spermatozoa * metabolism pathology physiology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: Since the incidence of vancomycin-resistant enterococci (VRE) is increasing and treatment options remain limited, we aimed to investigate the epidemiology of vancomycin- and tigecycline-resistant enterococci in a university hospital using whole genome sequencing (WGS). METHODS: Between April and December 2021, 102 VRE isolates were collected from a single tertiary care hospital in the Czech Republic. Forty selected isolates underwent antimicrobial susceptibility testing and WGS (Illumina short reads and long reads with MinION in selected isolates). RESULTS: All Enterococcus faecium isolates were resistant to ampicillin, carrying the PBP5_Met485Ala, PBP5_Glu629Val, and fluoroquinolones carrying the GyrA_Ser83Ile and ParC_Ser80Ile substitutions. The vanA operon was found on pELF2-like plasmids and plasmids carrying rep17 and/or rep18b genes. The novel Tn1546 structural variants were identified in vanA-carrying isolates. The vanB operon was located on the chromosome within a Tn1549 structural variant. Linezolid resistance was detected in one isolate carrying the 23S rDNA_G2576T substitution. Twenty-two isolates were resistant to tigecycline (tet(L), tet(M) and rpsJ_del 155-166 or RpsJ_Lys57Arg). Discrepancies between phenotypic and genotypic resistance profiles were observed for daptomycin (RpoB_Ser491Phe), trimethoprim/sulfamethoxazole (dfrG gene), nitrofurantoin (NmrA_Gln48Lys substitution without the EF0404 and EF0648 genes) and tetracycline (truncated TetM). The two multilocus sequence typing (MLST) schemes identified different numbers of STs: 5 STs, with ST117 as the predominant one (n = 32, 80%), versus 10 STs, with ST138 (27.5%), ST136 (25%), and ST1067 (20%) being the most frequent, respectively. The whole genome MLST revealed clonal clustering (0-7 allele differences) among isolates of the same ST. When comparing ST117 isolates from our study with 2,204 ST117 isolates from 15 countries, only one Czech isolate clustered closely with strains from Germany and the Netherlands, differing by just 16 alleles. CONCLUSIONS: The spread of E. faecium isolates ST117 resistant to vancomycin and tigecycline was identified. The discrepancies between resistance genotypes and phenotypes highlight the importance of combining molecular and phenotypic surveillance in antimicrobial resistance monitoring.
- MeSH
- Anti-Bacterial Agents * pharmacology MeSH
- Bacterial Proteins genetics MeSH
- Enterococcus faecium * genetics drug effects isolation & purification classification MeSH
- Vancomycin-Resistant Enterococci * genetics drug effects isolation & purification MeSH
- Genome, Bacterial MeSH
- Gram-Positive Bacterial Infections * microbiology epidemiology MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Drug Resistance, Multiple, Bacterial genetics MeSH
- Multilocus Sequence Typing MeSH
- Vancomycin Resistance genetics MeSH
- Whole Genome Sequencing MeSH
- Tigecycline * pharmacology MeSH
- Vancomycin * pharmacology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
Non-canonical (non-B) DNA structures-e.g. bent DNA, hairpins, G-quadruplexes (G4s), Z-DNA, etc.-which form at certain sequence motifs (e.g. A-phased repeats, inverted repeats, etc.), have emerged as important regulators of cellular processes and drivers of genome evolution. Yet, they have been understudied due to their repetitive nature and potentially inaccurate sequences generated with short-read technologies. Here we comprehensively characterize such motifs in the long-read telomere-to-telomere (T2T) genomes of human, bonobo, chimpanzee, gorilla, Bornean orangutan, Sumatran orangutan, and siamang. Non-B DNA motifs are enriched at the genomic regions added to T2T assemblies and occupy 9%-15%, 9%-11%, and 12%-38% of autosomes and chromosomes X and Y, respectively. G4s and Z-DNA are enriched at promoters and enhancers, as well as at origins of replication. Repetitive sequences harbor more non-B DNA motifs than non-repetitive sequences, especially in the short arms of acrocentric chromosomes. Most centromeres and/or their flanking regions are enriched in at least one non-B DNA motif type, consistent with a potential role of non-B structures in determining centromeres. Our results highlight the uneven distribution of predicted non-B DNA structures across ape genomes and suggest their novel functions in previously inaccessible genomic regions.
- MeSH
- DNA * chemistry genetics MeSH
- G-Quadruplexes MeSH
- Genome, Human MeSH
- Genome * MeSH
- Hominidae * genetics MeSH
- Humans MeSH
- Nucleotide Motifs MeSH
- Pan troglodytes genetics MeSH
- Repetitive Sequences, Nucleic Acid MeSH
- Telomere * genetics MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Nonspecific structural chromosomal aberrations (CAs) are found in around 1% of circulating lymphocytes from healthy individuals but the frequency may be higher after exposure to carcinogenic chemicals or radiation. CAs have been used in the monitoring of persons exposed to genotoxic agents and radiation. Previous studies on occupationally exposed individuals have shown associations between the frequency of CAs in peripheral blood lymphocytes and subsequent cancer risk. The cause for CA formation is believed to be unrepaired or insufficiently repaired DNA double-strand breaks or other DNA damage, and additionally telomere shortening. CAs include chromosome (CSAs) and chromatid type aberrations (CTAs). In the present review, we first describe the types of CAs, the conventional techniques used for their detection and some aspects of interpreting the results. We then focus on germline genetic variation in the frequency and type of CAs measured in a genome-wide association study in healthy individuals in relation to occupational and smoking-related exposure compared to nonexposed referents. The associations (at P < 10-5) on 1473 healthy individuals were broadly classified in candidate genes from functional pathways related to DNA damage response/repair, including PSMA1, UBR5, RRM2B, PMS2P4, STAG3L4, BOD1, COPRS, and FTO; another group included genes related to apoptosis, cell proliferation, angiogenesis, and tumorigenesis, COPB1, NR2C1, COPRS, RHOT1, ITGB3, SYK, and SEMA6A; a third small group mapped to genes KLF7, SEMA5A and ITGB3 which were related to autistic traits, known to manifest frequent CAs. Dedicated studies on 153 DNA repair genes showed associations for some 30 genes, the expression of which could be modified by the implicated variants. We finally point out that monitoring of CAs is so far the only method of assessing cancer risk in healthy human populations, and the use of the technology should be made more attractive by developing automated performance steps and incorporating artificial intelligence methods into the scoring.
- MeSH
- Genome-Wide Association Study * MeSH
- Chromosome Aberrations * MeSH
- Gene-Environment Interaction MeSH
- Humans MeSH
- Lymphocytes metabolism MeSH
- Neoplasms genetics MeSH
- DNA Repair genetics MeSH
- DNA Damage MeSH
- Occupational Exposure adverse effects MeSH
- Environmental Exposure adverse effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Cancer cells display complex genomic aberrations that include large-scale genetic rearrangements and epigenetic modulation that are not easily captured by short-read sequencing. This study presents a novel approach for simultaneous profiling of long-range genetic and epigenetic changes in matched cancer samples, focusing on clear cell renal cell carcinoma (ccRCC). ccRCC is a common kidney cancer subtype frequently characterized by a 3p deletion and the inactivation of the von Hippel-Lindau (VHL) gene. We performed integrated genetic, cytogenetic, and epigenetic analyses on paired tumor and adjacent nontumorous tissue samples. Optical genome mapping identified genomic aberrations as structural and copy number variations, complementing exome-sequencing findings. Single-molecule methylome and hydroxymethylome mapping revealed a significant global reduction in 5hmC level in both sample pairs, and a correlation between both epigenetic signals and gene expression was observed. The single-molecule epigenetic analysis identified numerous differentially modified regions, some implicated in ccRCC pathogenesis, including the genes VHL, PRCC, and PBRM1. Notably, pathways related to metabolism and cancer development were significantly enriched among these differential regions. This study demonstrates the feasibility of integrating optical genome and epigenome mapping for comprehensive characterization of matched tumor and adjacent tissue, uncovering both established and novel somatic aberrations.
- MeSH
- DNA-Binding Proteins MeSH
- Epigenesis, Genetic * genetics MeSH
- Epigenome * genetics MeSH
- Carcinoma, Renal Cell * genetics pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Chromosome Mapping methods MeSH
- DNA Methylation * genetics MeSH
- Von Hippel-Lindau Tumor Suppressor Protein genetics MeSH
- Kidney Neoplasms * genetics pathology MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Transcription Factors MeSH
- DNA Copy Number Variations * genetics MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
BACKGROUND: The choroid plexus (ChP) is the secretory epithelial structure located in the brain ventricles. Choroid plexus tumors (CPTs) are rare neoplasms predominantly occurring in young patients with intensified malignancy in children. CPT treatment is hindered by insufficient knowledge of tumor pathology and the limited availability of valid models. METHODS: Genomic and transcriptomic data from CPT patients were analyzed to identify the putative pathological pathway. Cellular and molecular techniques were employed to validate bioinformatic results in CPT patient samples. Pharmacologic inhibition of Wnt/β-catenin signaling was assessed in CPT cells. Cell-based assays of ChP cell lines were performed following CRISPR-Cas9-derived knockout and overexpression of Wnt/β-catenin pathway genes. A 3D CPT model was generated through CRISPR-Cas9-derived knockout of APC. RESULTS: We discovered that Wnt/β-catenin signaling is activated in human CPTs, likely as a consequence of large-scale chromosomal instability events of the CPT genomes. We demonstrated that CPT-derived cells depend on autocrine Wnt/β-catenin signaling for survival. Constitutive Wnt/β-catenin pathway activation, either through knockout of the negative regulator APC or overexpression of the ligand WNT3A, induced tumorigenic properties in ChP 2D in vitro models. Increased activation of the Wnt/β-catenin pathway in ChP organoids, through treatment with a potent GSK3β inhibitor, reduced the differentiation of mature ChP epithelial cells. Remarkably, the depletion of APC was sufficient to induce the oncogenic transformation of ChP organoids. CONCLUSIONS: Our research identifies Wnt/β-catenin signaling as a critical driver of CPT tumorigenesis and provides the first 3D in vitro model for future pathological and therapeutic studies of CPT.
- MeSH
- beta Catenin metabolism genetics MeSH
- Carcinogenesis metabolism MeSH
- Humans MeSH
- Tumor Cells, Cultured MeSH
- Choroid Plexus Neoplasms * pathology metabolism genetics MeSH
- Choroid Plexus metabolism pathology MeSH
- Cell Proliferation MeSH
- Gene Expression Regulation, Neoplastic MeSH
- Wnt Signaling Pathway * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Quantitative genomic mapping of DNA damage may provide insights into the underlying mechanisms of damage and repair. Sequencing based approaches are bound to the limitations of PCR amplification bias and read length which hamper both the accurate quantitation of damage events and the ability to map them to structurally complex genomic regions. Optical Genome mapping in arrays of parallel nanochannels allows physical extension and genetic profiling of millions of long genomic DNA fragments, and has matured to clinical utility for characterization of complex structural aberrations in cancer genomes. Here we present a new mapping modality, Repair-Assisted Damage Detection - Optical Genome Mapping (RADD-OGM), a method for single-molecule level mapping of DNA damage on a genome-wide scale. Leveraging ultra-long reads to assemble the complex structure of a sarcoma cell-line genome, we mapped the genomic distribution of oxidative DNA damage, identifying regions more susceptible to DNA oxidation. We also investigated DNA repair by allowing cells to repair chemically induced DNA damage, pinpointing locations of concentrated repair activity, and highlighting variations in repair efficiency. Our results showcase the potential of the method for toxicogenomic studies, mapping the effect of DNA damaging agents such as drugs and radiation, as well as following specific DNA repair pathways by selective induction of DNA damage. The facile integration with optical genome mapping enables performing such analyses even in highly rearranged genomes such as those common in many cancers, a challenging task for sequencing-based approaches.
- MeSH
- Bromates toxicity MeSH
- Humans MeSH
- Chromosome Mapping * instrumentation methods MeSH
- Microfluidic Analytical Techniques * instrumentation methods MeSH
- Cell Line, Tumor MeSH
- Nanotechnology * instrumentation methods MeSH
- DNA Repair genetics MeSH
- Oxidative Stress drug effects genetics MeSH
- DNA Damage * genetics MeSH
- Gene Expression Regulation MeSH
- Gene Expression Profiling MeSH
- Toxicogenetics * instrumentation methods MeSH
- DNA Copy Number Variations MeSH
- Single Molecule Imaging * instrumentation methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
... Contents -- 1 Historical Introduction 1 -- 2 Normal Chromosomes 4 -- 2.1 Introduction 4 -- 2.2 Chromosome ... ... Chromosome Abnormalities -- 5.4.2.2 Detailed System (Karyotype Format) for Designating Structural Chromosome ... ... - 5.4.3.2 Recombinant Chromosomes -- 5.5 Specification of Structural Rearrangements -- 5.5.1 Additional ... ... Derived from One Chromosome -- 5.5.16.2 Ring Chromosomes Derived from More than One Chromosome -- 5.5.17 ... ... Structural Chromosome Abnormalities -- 36 -- 38 -- 38 -- 38 -- 38 -- 39 -- 40 -- 40 -- 42 -- Inversions ...
Genetics
viii, 224 stran : 16 grafických znázornění, ilustrace, 12 tabulek
- Conspectus
- Obecná genetika. Obecná cytogenetika. Evoluce
- NML Fields
- cytologie, klinická cytologie
- genetika, lékařská genetika
- NML Publication type
- kolektivní monografie