A simple, sensitive and quick HPLC method was developed for the determination of ketoprofen in cell culture media (EMEM, DMEM, RPMI). Separation was performed using a gradient on the C18 column with a mobile phase of acetonitrile and miliQ water acidified by 0.1 % (v/v) formic acid. The method was validated for parameters including linearity, accuracy, precision, limit of quantitation and limit of detection, as well as robustness. The response was found linear over the range of 3-100 μg/mL as demonstrated by the acquired value of correlation coefficient R2=0.9997. The described method is applicable for determination of various pharmacokinetic aspects of ketoprofen in vitro.
As of the 7th of July 2024, 775,754,322 confirmed cases of COVID-19, including 7,053,902 deaths worldwide, had been reported to the WHO (World Health Organization). Nevertheless, untill the 15th of July 2024, a total of 13,578,710,228 vaccine doses had been administered, with almost no country spared from COVID-19 attacks. The pathophysiology of this virus is complicated, and several symptoms require a deep understanding of the actual mechanisms. It is unclear why some patients develop severe symptoms while others do not, although literature suggests a role for vitamin D. Vitamin D plays a crucial role in the infection or in ameliorating the severity of symptoms. The mechanism of action of vitamin D and vitamin D deficiency (VDD) is well understood. VDD is associated with increased hospitalization of severely ill patients and increased levels of COVID-19-caused mortality. Recent studies suggest that vitamin D levels and genetic variations in the vitamin D receptor (VDR) gene significantly impact the severity and outcomes of COVID-19, especially in the infections caused by Delta and Omicron variants. Furthermore, VDD causes immune system dysregulation upon infection with SARS-CoV-2, indicating that vitamin D sufficiency is crucial in fighting against COVID-19 infection. The therapeutic effect of vitamin D raises interest in its potential role as a prophylactic and treatment adjunct. We evaluate the immunomodulatory effects of vitamin D and its ability to enhance the efficacy of new antiviral drugs like molnupiravir and paxlovid against SARS-CoV-2. This review discusses the role of vitamin D sufficiency and VDD in COVID-19 initiation and progression, emphasizing the molecular mechanisms by which vitamin D exerts its actions as a proactive step for the next pandemic. However, there is still no clear evidence of vitamin D's impact on prevention and treatment, leading to contradictory findings. Therefore, large-scale randomized trials are required to reach a definitive conclusion. A bibliometric analysis of publications related to vitamin D, immunity, and COVID-19 revealed a significant increase in research activity in this area, particularly in 2020-2024, underscoring the growing recognition of vitamin D's potential role in the context of the pandemic.
- MeSH
- COVID-19 * imunologie MeSH
- farmakoterapie COVID-19 MeSH
- lidé MeSH
- nedostatek vitaminu D * farmakoterapie imunologie MeSH
- pandemie MeSH
- receptory kalcitriolu metabolismus MeSH
- SARS-CoV-2 imunologie MeSH
- vitamin D * terapeutické užití aplikace a dávkování MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Head and neck cancers (HNC) are aggressive, difficult-to-treat tumors that can be caused by genetic factors but mainly by lifestyle or infection caused by the human papillomavirus. As the sixth most common malignancy, it presents a formidable therapeutic challenge with limited therapeutic modalities. Curcumin, a natural polyphenol, is appearing as a promising multitarget anticancer and antimetastatic agent. Numerous studies have shown that curcumin and its derivatives have the potential to affect signaling pathways (NF-κB, JAK/STAT, and EGFR) and molecular mechanisms that are crucial for the growth and migration of head and neck tumors. Furthermore, its ability to interact with the tumor microenvironment and trigger the immune system may significantly influence the organism's immune response to the tumor. Combining curcumin with conventional therapies such as chemotherapy or radiotherapy may improve the efficacy of treatment and reduce the side effects of treatment, thereby increasing its therapeutic potential. This review is a comprehensive overview that discusses both the benefits and limitations of curcumin and its therapeutic effects in the context of tumor biology, with an emphasis on molecular mechanisms in the context of HNC. This review also includes possibilities to improve the limiting properties of curcumin both in terms of the development of new derivatives, formulations, or combinations with conventional therapies that have potential as a new type of therapy for the treatment of HNC and subsequent use in clinical practice.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Mitochondrial autophagy (mitophagy) is very important process for the maintenance of cellular homeostasis, functionality and survival. Its dysregulation is associated with high risk and progression numerous serious diseases (e.g., oncological, neurodegenerative and cardiovascular ones). Therefore, targeting mitophagy mechanisms is very hot topic in the biological and medicinal research. The interrelationships between the regulation of mitophagy and iron homeostasis are now becoming apparent. In short, mitochondria are central point for the regulation of iron homeostasis, but change in intracellular cheatable iron level can induce/repress mitophagy. In this review, relationships between iron homeostasis and mitophagy are thoroughly discussed and described. Also, therapeutic applicability of mitophagy chelators in the context of individual diseases is comprehensively and critically evaluated.
Mitochondrial dysregulation plays a significant role in the carcinogenesis. On the other hand, its destabilization strongly represses the viability and metastatic potential of cancer cells. Photodynamic and photothermal therapies (PDT and PTT) target mitochondria effectively, providing innovative and non-invasive anticancer therapeutic modalities. Cyanine dyes, with strong mitochondrial selectivity, show significant potential in enhancing PDT and PTT. The potential and limitations of cyanine dyes for mitochondrial PDT and PTT are discussed, along with their applications in combination therapies, theranostic techniques, and optimal delivery systems. Additionally, novel approaches for sonodynamic therapy using photoactive cyanine dyes are presented, highlighting advances in cancer treatment.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Immune checkpoints regulate the immune system response. Recent studies suggest that flavonoids, known as phytoestrogens, may inhibit the PD-1/PD-L1 axis. We explored the potential of estrogens and 17 Selective Estrogen Receptor Modulators (SERMs) as inhibiting ligands for immune checkpoint proteins (CTLA-4, PD-L1, PD-1, and CD80). Our docking studies revealed strong binding energy values for quinestrol, quercetin, and bazedoxifene, indicating their potential to inhibit PD-1 and CTLA-4. Quercetin and bazedoxifene, known to modulate EGFR and IL-6R alongside estrogen receptors, can influence the immune checkpoint functionality. We discuss the impact of SERMs on PD-1 and CTLA-4, suggesting that these SERMs could have therapeutic effects through immune checkpoint inhibition. This study highlights the potential of SERMs as inhibitory ligands for immune checkpoint proteins, emphasizing the importance of considering PD-1 and CTLA-4 inhibition when evaluating SERMs as therapeutic agents. Our findings open new avenues for cancer immunotherapy by exploring the interaction between various SERMs and immune checkpoint pathways.
- MeSH
- antigen CTLA-4 MeSH
- antigeny CD274 MeSH
- antigeny CD279 MeSH
- imunoterapie MeSH
- lidé MeSH
- modulátory estrogenních receptorů MeSH
- nádory * terapie MeSH
- proteiny kontrolních bodů imunitní reakce * MeSH
- quercetin MeSH
- selektivní modulátory estrogenních receptorů farmakologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
TET proteins (methylcytosine dioxygenases) play an important role in the regulation of gene expression. Dysregulation of their activity is associated with many serious pathogenic states such as oncological diseases. Regulation of their activity by specific inhibitors could represent a promising therapeutic strategy. Therefore, this review describes various types of TET protein inhibitors in terms of their inhibitory mechanism and possible applicability. The potential and possible limitations of this approach are thoroughly discussed in the context of TET protein functionality in living systems. Furthermore, possible therapeutic strategies based on the inhibition of TET proteins are presented and evaluated, especially in the field of oncological diseases.
- MeSH
- dioxygenasy * antagonisté a inhibitory MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Treatment of metastatic cancer is one of the biggest challenges in anticancer therapy. Curcumin is interesting nature polyphenolic compound with unique biological and medicinal effects, including repression of metastases. High impact studies imply that curcumin can modulate the immune system, independently target various metastatic signalling pathways, and repress migration and invasiveness of cancer cells. This review discusses the potential of curcumin as an antimetastatic agent and describes potential mechanisms of its antimetastatic activity. In addition, possible strategies (curcumin formulation, optimization of the method of administration and modification of its structure motif) to overcome its limitation such as low solubility and bioactivity are also presented. These strategies are discussed in the context of clinical trials and relevant biological studies.
- MeSH
- antitumorózní látky * farmakologie terapeutické užití chemie MeSH
- kurkumin * farmakologie terapeutické užití MeSH
- lidé MeSH
- nádory * farmakoterapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Dysregulation of iron homeostasis is one of the important processes in the development of many oncological diseases, such as pancreatic cancer. Targeting it with specific agents, such as an iron chelator, are promising therapeutic methods. In this study, we tested the cytotoxicity of novel azulene hydrazide-hydrazone-based chelators against pancreatic cancer cell lines (MIA PaCa-2, PANC-1, AsPC-1). All prepared chelators (compounds 4-6) showed strong cytotoxicity against pancreatic cancer cell lines and high selectivity for cancer cell lines compared to the healthy line. Their cytotoxicity is lower than thiosemicarbazone-based chelators Dp44mT and DpC, but significantly higher than hydroxamic acid-based chelator DFO. The chelator tested showed mitochondrial and lysosomal co-localization and its mechanism of action was based on the induction of hypoxia-inducible factor-1-alpha (HIF-1α), N-myc downstream-regulated gene-1 (NDRG1) and transferrin receptor 1 (TfR1). This strongly implies that the cytotoxic effect of tested chelators could be associated with mitophagy induction. Lipinski's rule of five analyses was performed to determine whether the prepared compounds had properties ensuring their bioavailability. In addition, the drug-likeness and drug-score were calculated and discussed.
- MeSH
- azuleny MeSH
- chelátory železa farmakologie MeSH
- hydraziny MeSH
- hydrazony farmakologie MeSH
- kyseliny hydroxamové MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- nádory slinivky břišní * farmakoterapie MeSH
- receptory transferinu MeSH
- thiosemikarbazony * farmakologie MeSH
- železo MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
nestr.
Porphyria variegata (PV) is an autosomal dominant disorder with low penetrance, resulting from a partial deficiency of the enzyme protoporphyrinogen oxidase (hPPO). More than a hundred forty diverse mutations in the hPPO gene have been linked to the disease and this heterogeneity complicates finding a common one-fits-all therapeutic solution. Instead, personalized approaches might hold a promise for the treatment of the PV that include restoring wild-type hPPO activity with molecules specifically tailored for each hPPO mutated variant. This proposal is focused on the identification of such chemical chaperones with the translational potential in human medicine. To this end we will characterize in depth hPPO mutated variants associated with porphyria etiology using a host of enzymatic, biophysical and structural assays. Next, these hPPO variants will be screened against combinatorial libraries of chemical chaperones aimed at the discovery of privileged molecules enhancing hPPO enzymatic activity. Lead compounds will be further optimized to be exploitable in human medicine.
Porfyrie variegata (PV) je vzácné autosomálně dominantní onemocnění způsobené částečnou deficiencí enzymatické aktivity protoporfyrinogenoxidasy (hPPO). V literatuře bylo popsáno více než 140 mutací spojovaných s PV a tato heterogenita znemožňuje nalezení jednotného terapeutického postupu, který by byl využitelný pro všechny pacienty. Naproti tomu, personalizovaná medicína nabízí alternativu ve formě obnovení původní aktivity hPPO s využitím látek (chemických šaperonů), které jsou specificky navrženy pro danou individuální mutaci v hPPO. Tento projekt je zaměřen na identifikaci takových chemických šaperonů s využitím v humánní medicíně. Za tímto účelem využijeme široké portfolio enzymatických, biofyzikálních a strukturních přístupů, kterými detailně charakterizujeme mutanty hPPO spojované s výskytem PV. V dalším kroku pak s využitím kombinatoriálních knihoven chemických šaperonů identifikujeme sloučeniny specificky zvyšující aktivitu dané mutanty hPPO. Takto identifikované sloučeniny s vhodnými vlastnostmi budou v dalších krocích optimalizovány pro použití v humánní medicíně.
- Klíčová slova
- mutace, personalizovaná medicína, protoporfyrinogenoxidasa, metabolické poruchy, molekulární struktura, dědičnost, chemické šaperony, protoporphyrinogen oxidase, mutations, metabolic disorders, molecular structure, personalized medicine, inheritance, chemical chaperons,
- NLK Publikační typ
- závěrečné zprávy o řešení grantu AZV MZ ČR