Acta endocrinologica, ISSN 0300-9750 vol. 108, suppl. 266, 1985
39 s. : tab., grafy ; 24 cm
Acta universitatis upsaliensis. Comprehensive summaries of Uppsala dissertations from the Faculty of Medicine, ISSN 0282-7476 860
70 s. : il. ; 24 cm
- MeSH
- Echocardiography methods instrumentation statistics & numerical data MeSH
- Enzyme-Linked Immunosorbent Assay MeSH
- Endothelins blood MeSH
- Research Support as Topic MeSH
- Ventricular Function, Right physiology MeSH
- Interleukin-6 blood MeSH
- Catheterization methods instrumentation MeSH
- Humans MeSH
- Cardiac Output, Low diagnosis etiology ultrasonography MeSH
- Ultrasonography, Doppler methods instrumentation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Comparative Study MeSH
AIM: To study the impact of family history (FH) of type 2 diabetes mellitus on beta-cell compensatory mechanism in women with polycystic ovary syndrome (PCOS). SUBJECTS AND METHODS: A total of 70 women with PCOS, 14 with first-degree relative with type 2 diabetes mellitus (T2DM) (FH+), 56 with negative FH of T2DM (FH-) and 72 age and BMI matched control healthy women (CNT) underwent oral glucose tolerance test (OGTT). Insulin resistance was evaluated as oral glucose index (OGIS); insulin and C-peptide secretion as the insulinogenic index in 30th min of OGTT. RESULTS: Fasting blood glucose levels were significantly higher in FH+ than in FH- (p < 0.05). Fasting insulin was higher in FH+ than in CNT (p < 0.05). Fasting C-peptide was significantly higher in both FH- and FH+ than in CNT (p < 0.05 and p < 0.01, respectively). OGIS was lower in FH+ than in FH- or in CNT (p < 0.05). Insulinogenic index calculated from C-peptide values (II-Cp) was lower in FH+ than in CNT (p < 0.05). Adaptation index calculated from the values of OGIS and insulinogenic index was significantly lower in FH+ than in CNT or in FH- (p < 0.0001 and p < 0.01, respectively). CONCLUSIONS: Insulin resistance and defective early-phase insulin secretion is present only in those PCOS-affected subjects who had positive FH of T2DM.
- MeSH
- Analysis of Variance MeSH
- Insulin-Secreting Cells physiology metabolism MeSH
- C-Reactive Protein genetics metabolism MeSH
- Diabetes Mellitus, Type 2 genetics physiopathology MeSH
- Adult MeSH
- Glucose Tolerance Test MeSH
- Body Mass Index MeSH
- Insulin genetics metabolism MeSH
- Insulin Resistance genetics MeSH
- Blood Glucose genetics metabolism MeSH
- Humans MeSH
- Area Under Curve MeSH
- Polycystic Ovary Syndrome genetics metabolism physiopathology MeSH
- Testosterone metabolism MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Female MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
V posledních deseti letech došlo k mimořádně bouřlivému rozvoji molekulární biologie a genetiky. Denně přibývají nové poznatky umožněné nejen procesem vlastního výzkumu, ale též obrovským rozvojem jeho technologického zázemí. Uvedený rozvoj výzkumu přiblížil dobu, kdy výsledky výzkumu se stanou součástí praktické medicíny i jiných odvětví. Tak, jako jsme museli znát alespoň základy klasické biochemie, abychom porozuměli základům farmakologie, tak pro blízkou budoucnost bude nezbytné znát minimální základy molekulární biologie a genetiky, abychom byli schopni zodpovědně využívat možností diagnostiky a terapie nemocí, které nám současné výzkumy nabídnou. Proto se autor pokusil shrnout základní a zjednodušené informace o struktuře a funkci receptorů, o přenosu informace (signálu) z extracelulárního prostoru přes membránu do cytosolu a pak dále na úroveň transkripce. Na příkladu desenzitizace beta adrenoreceptoru je pak naznačena šíře složitosti popsaných procesů.
The extraordinary intensive development of the molecular biology and the genetics as well as the technological development supporting both sciences brought an unusual amount of our knowledges that were discovered in the past 10 years. The mentioned results of the research are still the closer part of the practical medicine. The basic knowledge of the molecular biology and the genetics became very important for the everyday medical practice. Therefore the author attempted to summarize and simplify the information about the structure and the function of the receptors and about the transduction of the signals from the extracellular side across the cell membranes to the cytosol and then to the transcriptional level. The example of the desensitization of beta 2-adrenoceptor was used to show the extensive difficulties of the described processes.
- MeSH
- Research Support as Topic MeSH
- Receptors, Cell Surface physiology classification MeSH
- Signal Transduction MeSH
- Publication type
- Review MeSH
- MeSH
- Exercise physiology MeSH
- Hormones, Ectopic metabolism MeSH
- Endocrinology MeSH
- Research Support as Topic MeSH
- Interleukin-6 metabolism MeSH
- Intracellular Signaling Peptides and Proteins analysis metabolism MeSH
- Leptin analysis metabolism MeSH
- Humans MeSH
- Metabolic Syndrome etiology metabolism prevention & control MeSH
- Obesity etiology MeSH
- Physical Exertion MeSH
- Tumor Necrosis Factor-alpha metabolism therapeutic use MeSH
- Adipose Tissue metabolism MeSH
- Check Tag
- Humans MeSH
Despite the fact that environmental pollution has been implicated in the global rise of diabetes, the research on the impact of emerging pollutants such as novel flame retardants remains limited. In line with the shift towards the use of non-animal approaches in toxicological testing, this study aimed to investigate the effects of two novel flame retardants tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) and triphenyl phosphate (TPhP) in rat (INS1E) and human (NES2Y) pancreatic beta-cell lines. One-week exposure to 1 μM and 10 μM TDCIPP and TPhP altered intracellular insulin and proinsulin levels, but not the levels of secreted insulin (despite the presence of a statistically insignificant trend). The exposures also altered the protein expression of several factors involved in beta-cell metabolic pathways and signaling, including ATP citrate lyase, isocitrate dehydrogenase 1, perilipins, glucose transporters, ER stress-related factors, and antioxidant enzymes. This study has brought new and valuable insights into the toxicity of TDCIPP and TPhP on beta-cell function and revealed alterations that might impact insulin secretion after more extended exposure. It also adds to the scarce studies using in vitro pancreatic beta-cells models in toxicological testing, thereby promoting the development of non-animal testing strategy for identifying pro-diabetic effects of chemical pollutants.
- MeSH
- Insulin-Secreting Cells * drug effects metabolism MeSH
- Cell Line MeSH
- Homeostasis * drug effects MeSH
- Insulin * metabolism MeSH
- Rats MeSH
- Humans MeSH
- Organophosphates toxicity MeSH
- Organophosphorus Compounds * toxicity MeSH
- Proinsulin metabolism MeSH
- Flame Retardants * toxicity MeSH
- Insulin Secretion drug effects MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Diabetes mellitus 2. typu (DM2) je heterogenní onemocnění, na jehož rozvoji se podílejí genetické faktory i vnější prostředí. Přes značné úsilí, které je mapování genetického pozadí DM2 věnováno, nejsou genetické příčiny nejběžnějších forem diabetu objasněny. V posledních letech je v souvislosti s DM2 věnována velká pozornost draselným kanálům pankreatických beta buněk, neboť hrají stěžejní úlohu v regulaci inzulinové sekrece. Článek shrnuje poznatky o struktuře a funkci draselných kanálů se zaměřením na jejich zapojení do etiopatogeneze DM2. Zvláštní pozornost je věnována polymorfismu E23K, který je považován za jeden z nejvýznamnějších genetických rizikových faktorů,které byly v souvislosti s DM2 dosud odhaleny.
Type 2 diabetes mellitus (DM2) is generally perceived as a heterogeneous polygenic disorder influenced by both hereditary and environmental factors. Despite intensive investigations, little progress has been made in identifying genes that impart susceptibility to the common late-onset forms of the disease. Recently, genes encoding for components of ATP-sensitive K+ channels in pancreatic beta cells have been widely considered as DM2 targets. These channels control insulin secretion by coupling metabolism to membrane electrical activity. The article summarizes knowledge concerning structure and function of the channels with respect to DM2. A common E23K polymorphism in the pore-forming subunit of the channels, which belongs to the most important genetic risk factors for DM2 yet identified, is discussed here.
- MeSH
- Diabetes Mellitus, Type 2 etiology genetics MeSH
- Potassium Channels physiology genetics chemistry MeSH
- Research Support as Topic MeSH
- Genes genetics MeSH
- Langerhans Cells pathology secretion MeSH
- Humans MeSH
- Mutation MeSH
- Polymorphism, Genetic MeSH
- Check Tag
- Humans MeSH
- Publication type
- Comparative Study MeSH
Loss of pancreatic beta cells is a central feature of type 1 (T1D) and type 2 (T2D) diabetes, but a therapeutic strategy to preserve beta cell mass remains to be established. Here we show that the death receptor TMEM219 is expressed on pancreatic beta cells and that signaling through its ligand insulin-like growth factor binding protein 3 (IGFBP3) leads to beta cell loss and dysfunction. Increased peripheral IGFBP3 was observed in established and at-risk T1D/T2D patients and was confirmed in T1D/T2D preclinical models, suggesting that dysfunctional IGFBP3/TMEM219 signaling is associated with abnormalities in beta cells homeostasis. In vitro and in vivo short-term IGFBP3/TMEM219 inhibition and TMEM219 genetic ablation preserved beta cells and prevented/delayed diabetes onset, while long-term IGFBP3/TMEM219 blockade allowed for beta cell expansion. Interestingly, in several patients' cohorts restoration of appropriate IGFBP3 levels was associated with improved beta cell function. The IGFBP3/TMEM219 pathway is thus shown to be a physiological regulator of beta cell homeostasis and is also demonstrated to be disrupted in T1D/T2D. IGFBP3/TMEM219 targeting may therefore serve as a therapeutic option in diabetes.
- MeSH
- Insulin-Secreting Cells metabolism MeSH
- Diabetes Mellitus, Type 1 genetics metabolism pathology MeSH
- Diabetes Mellitus, Type 2 genetics metabolism pathology MeSH
- Adult MeSH
- Homeostasis genetics MeSH
- Insulin-Like Growth Factor Binding Protein 3 genetics metabolism MeSH
- Immunoblotting MeSH
- Cells, Cultured MeSH
- Middle Aged MeSH
- Humans MeSH
- Membrane Proteins genetics metabolism MeSH
- Mice, Inbred C57BL MeSH
- Mice, Inbred NOD MeSH
- Mice, Knockout MeSH
- Mice, Transgenic MeSH
- Reverse Transcriptase Polymerase Chain Reaction MeSH
- Gene Expression Regulation * MeSH
- Signal Transduction genetics MeSH
- Animals MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH