Data visualization
Dotaz
Zobrazit nápovědu
Článek popisuje možnosti zpracování medicínských dat potnoci programu Analyze. Program Analyze představuje propracovaný systém umožňující předzpracování a vizualizaci medicínských dat jak ve 2D, tak v 3D prostoru. v oblasti 2D jsou to nástroje pro konverzi vstupnich dat, filtraci (včetně rychlé Fourierovy a Wavelet transformace), segmentaci a operace s rastrovými obrazy. U prostorového zpracování je možné provádět rekonstrukce dat z paralelních rastrových řezů získaných například Z CT a MRI. Program zahrnuje nástroje pro měření a prezentaci výsledků.
The article deals with the possibilities of processing medical data using the program Analyze. The program Analyze represents a complex system for pre-processing and visualization of medical data in both 2D and 3D space. In 2D mode it represents image conversion, filtering (including fast Fourier and Wavelet transformation), segmentation and operations with raster pictures. In 3D it allows users to reconstruct data from parallel raster slices obtained from CT and MR. The program also comprises tools for measurement and presentation of results.
- MeSH
- lékařská počítačová informatika MeSH
- lidé MeSH
- software MeSH
- zobrazování dat MeSH
- Check Tag
- lidé MeSH
Use of a multi-sensor approach can provide citizens with holistic insights into the air quality of their immediate surroundings and their personal exposure to urban stressors. Our work, as part of the ICARUS H2020 project, which included over 600 participants from seven European cities, discusses the data fusion and harmonization of a diverse set of multi-sensor data streams to provide a comprehensive and understandable report for participants. Harmonizing the data streams identified issues with the sensor devices and protocols, such as non-uniform timestamps, data gaps, difficult data retrieval from commercial devices, and coarse activity data logging. Our process of data fusion and harmonization allowed us to automate visualizations and reports, and consequently provide each participant with a detailed individualized report. Results showed that a key solution was to streamline the code and speed up the process, which necessitated certain compromises in visualizing the data. A thought-out process of data fusion and harmonization of a diverse set of multi-sensor data streams considerably improved the quality and quantity of distilled data that a research participant received. Though automation considerably accelerated the production of the reports, manual and structured double checks are strongly recommended.
- MeSH
- lidé MeSH
- ukládání a vyhledávání informací MeSH
- velkoměsta MeSH
- znečištění ovzduší * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- velkoměsta MeSH
BACKGROUND: Remote measurement technology (RMT) involves the use of wearable devices and smartphone apps to measure health outcomes in everyday life. RMT with feedback in the form of data visual representations can facilitate self-management of chronic health conditions, promote health care engagement, and present opportunities for intervention. Studies to date focus broadly on multiple dimensions of service users' design preferences and RMT user experiences (eg, health variables of perceived importance and perceived quality of medical advice provided) as opposed to data visualization preferences. OBJECTIVE: This study aims to explore data visualization preferences and priorities in RMT, with individuals living with depression, those with epilepsy, and those with multiple sclerosis (MS). METHODS: A triangulated qualitative study comparing and thematically synthesizing focus group discussions with user reviews of existing self-management apps and a systematic review of RMT data visualization preferences. A total of 45 people participated in 6 focus groups across the 3 health conditions (depression, n=17; epilepsy, n=11; and MS, n=17). RESULTS: Thematic analysis validated a major theme around design preferences and recommendations and identified a further four minor themes: (1) data reporting, (2) impact of visualization, (3) moderators of visualization preferences, and (4) system-related factors and features. CONCLUSIONS: When used effectively, data visualizations are valuable, engaging components of RMT. Easy to use and intuitive data visualization design was lauded by individuals with neurological and psychiatric conditions. Apps design needs to consider the unique requirements of service users. Overall, this study offers RMT developers a comprehensive outline of the data visualization preferences of individuals living with depression, epilepsy, and MS.
- MeSH
- deprese * psychologie MeSH
- dospělí MeSH
- epilepsie * psychologie MeSH
- kvalitativní výzkum * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mobilní aplikace MeSH
- nositelná elektronika MeSH
- pacientova volba psychologie statistika a číselné údaje MeSH
- roztroušená skleróza * psychologie MeSH
- senioři MeSH
- telemedicína MeSH
- vizualizace dat MeSH
- zjišťování skupinových postojů * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Background: Classifying diseases into ICD codes has mainly relied on human reading a large amount of written materials, such as discharge diagnoses, chief complaints, medical history, and operation records as the basis for classification. Coding is both laborious and time consuming because a disease coder with professional abilities takes about 20 minutes per case in average. Therefore, an automatic code classification system can significantly reduce the human effort. Objectives: This paper aims at constructing a machine learning model for ICD-10 coding, where the model is to automatically determine the corresponding diagnosis codes solely based on free-text medical notes. Methods: In this paper, we apply Natural Language Processing (NLP) and Recurrent Neural Network (RNN) architecture to classify ICD-10 codes from natural language texts with supervised learning. Results: In the experiments on large hospital data, our predicting result can reach F1-score of 0.62 on ICD-10-CM code. Conclusion: The developed model can significantly reduce manpower in coding time compared with a professional coder.
- MeSH
- automatizované zpracování dat metody MeSH
- deep learning * MeSH
- elektronické zdravotní záznamy MeSH
- mezinárodní klasifikace nemocí * MeSH
- neuronové sítě MeSH
- strojové učení MeSH
- ukládání a vyhledávání informací metody statistika a číselné údaje MeSH
- vizualizace dat MeSH
- zpracování přirozeného jazyka MeSH
- Publikační typ
- práce podpořená grantem MeSH
Segmentation helps interpret imaging data in a biological context. With the development of powerful tools for automated segmentation, public repositories for imaging data have added support for sharing and visualizing segmentations, creating the need for interactive web-based visualization of 3D volume segmentations. To address the ongoing challenge of integrating and visualizing multimodal data, we developed Mol* Volumes and Segmentations (Mol*VS), which enables the interactive, web-based visualization of cellular imaging data supported by macromolecular data and biological annotations. Mol*VS is fully integrated into Mol* Viewer, which is already used for visualization by several public repositories. All EMDB and EMPIAR entries with segmentation datasets are accessible via Mol*VS, which supports the visualization of data from a wide range of electron and light microscopy experiments. Additionally, users can run a local instance of Mol*VS to visualize and share custom datasets in generic or application-specific formats including volumes in .ccp4, .mrc, and .map, and segmentations in EMDB-SFF .hff, Amira .am, iMod .mod, and Segger .seg. Mol*VS is open source and freely available at https://molstarvolseg.ncbr.muni.cz/.
BACKGROUND: The knowledge of cancer burden in the population, its time trends, and the possibility of international comparison is an important starting point for cancer programs. A reliable interactive tool describing cancer epidemiology in children and adolescents has been nonexistent in the Czech Republic until recently. OBJECTIVE: The goal of this study is to develop a new web portal entitled the Czech Childhood Cancer Information System (CCCIS), which would provide information on childhood cancer epidemiology in the Czech Republic. METHODS: Data on childhood cancers have been obtained from the Czech National Cancer Registry. These data were validated using the clinical database of childhood cancer patients and subsequently combined with data from the National Register of Hospitalised Patients and with data from death certificates. These validated data were then used to determine the incidence and survival rates of childhood cancer patients aged 0 to 19 years who were diagnosed in the period 1994 to 2016 (N=9435). Data from death certificates were used to monitor long-term mortality trends. The technical solution is based on the robust PHP development Symfony framework, with the PostgreSQL system used to accommodate the data basis. RESULTS: The web portal has been available for anyone since November 2019, providing basic information for experts (ie, analyses and publications) on individual diagnostic groups of childhood cancers. It involves an interactive tool for analytical reporting, which provides information on the following basic topics in the form of graphs or tables: incidence, mortality, and overall survival. Feedback was obtained and the accuracy of outputs published on the CCCIS portal was verified using the following methods: the validation of the theoretical background and the user testing. CONCLUSIONS: We developed software capable of processing data from multiple sources, which is freely available to all users and makes it possible to carry out automated analyses even for users without mathematical background; a simple selection of a topic to be analyzed is required from the user.
- MeSH
- analýza dat * MeSH
- dítě MeSH
- incidence MeSH
- informační systémy MeSH
- lidé MeSH
- mladiství MeSH
- nádory * epidemiologie MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Současná zdravotnická technika produkuje každým okamžikem velké objemy dat. Výsledkem je informační přetížení a nemožnost zvládnout tato enormní data, např. na odd. intenzivní péče. Nástroje pro vizualizaci dat mají za cíl zmenšit toto informační přetížení pomocí inteligentní abstrakce a vizualizace zajímavých atributů zpracovávaných dat. Nově vyvíjené soft - warové nástroje pro vizualizaci by měly podporovat rychlé porozumění složitým, rozsáhlým a dynamicky rostoucím datovým souborům ve všech oblastech medicíny. Jednou z takových oblastí je analýza a vyhodnocování dlouhodobých záznamů EEG. S vyhodnocováním EEG je spojena celá řada problémů. Jedním z nich je potřeba vizuální kontroly záznamu lékařem. V případě, že lékař musí kontrolovat a hodnotit dlouhodobý záznam EEG, je počítačová podpora analýzy a vizualizace velkou pomocí. Právě možnosti vizualizace EEG záznamů a procesu jejich analýzy jsou předmětem našeho příspěvku.
Healthcare technology produces today large sets of data every second. An information overload results from these enormous data volumes not manageable by physicians, e.g. in intensive care. Data visualization tools aim at reducing the information overload by intelligent abstraction and visualization of the features of interest in the current situation. Newly developed soft - ware tools for visualization should support fast comprehension of complex, large, and dynamically growing datasets in all fi elds of medicine. One of such fi elds is the analysis and evaluation of long–term EEG recordings. One of the problems that are connected with the evaluation of EEG signals is that it necessitates visual checking of such a recording performed by a physician. In case the physician has to check and evaluate long–term EEG recordings computer–aided data analysis and visualization might be of great help. Soft ware tools for visualization of EEG data and data analysis are presented in the paper.
- MeSH
- algoritmy MeSH
- anatomické modely MeSH
- elektroencefalografie využití MeSH
- epilepsie diagnóza MeSH
- financování organizované MeSH
- klasifikace MeSH
- kóma diagnóza patofyziologie MeSH
- lidé MeSH
- mapování mozku metody přístrojové vybavení MeSH
- modely neurologické MeSH
- neuronové sítě MeSH
- počítačové zpracování signálu přístrojové vybavení MeSH
- shluková analýza MeSH
- spánek fyziologie MeSH
- zobrazování trojrozměrné MeSH
- Check Tag
- lidé MeSH
Figurální (neboli neverbální) fluence je schopnost exekutivních funkcí, která nám poskytuje informace o divergentním myšlení, rozdělené pozornosti, plánování a mentální flexibilitě. Zhoršený výkon v testech zaměřených na figurální fluenci nacházíme u pacientů s neurologickým i psychiatrickým postižením. Pětitečkový test (Five Point Test, 5TT) je jeden z neuropsychologických testů, jenž slouží ke zhodnocení figurální fluence. Úkolem probanda je vytvořit co nejvíce obrazců v časovém limitu. Cílem této studie bylo vytvořit normy k 5TT pro českou dospělou populaci. Předkládáme normativní data pro dospělé ve věku od 20 do 85 let (n = 503). Hodnotili jsme počet správných odpovědí a počet perseverací. Počet správných odpovědí je ovlivněn věkem a vzděláním (r = –0,3; resp. 0,4; p < 0,0001), proto jsou normy rozděleny na pásma po 10 letech a dále podle ukončeného vzdělání. Počet perseverací s těmito proměnnými souvisí jen slabě (rs = 0,1; resp. –0,1; p < 0,05). Pohlaví nemá vliv na počet správných odpovědí ani perseverací (t = 0,09; p > 0,9 pro oba skóry).
Figural (or nonverbal) fluency is the ability of executive functions to provide information about divergent reasoning, divided attention, planning and mental flexibility. Impairments of figural fluency have been found in individuals with various neurological or psychiatric diseases. Five Point Test (5TT) is a neuropsychological test that assesses figural fluency. A participant is asked to generate as many unique designs as possible in a certain time limit. The aim of this study was to create Czech population norms for the Five Point Test. Normative data for adult population aged between 20 and 85 years (n = 503) are presented. We assessed the number of correct answers and the number of perseverations. The number of correct answers is influenced by age and education (r = –0.3 and 0.4, respectively, p < 0.0001); for this reason the norms are stratified into ten age ranges and also according to completed education. The number of perseverations correlates with these variables only weakly (rs = 0.1 and –0.1, respectively, p < 0.05). Gender has no impact neither on the number of correct answers nor on perseverative responses (t-test, p > 0.9 for both scores). Key words: Five Point Test – design fluency – normative data – executive functions – validity The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE “uniform requirements” for biomedical papers.
- MeSH
- dospělí MeSH
- exekutivní funkce * MeSH
- kognitivní poruchy * diagnóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- neuropsychologické testy * normy statistika a číselné údaje MeSH
- psychomotorický výkon MeSH
- referenční hodnoty MeSH
- reprodukovatelnost výsledků MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- statistika jako téma MeSH
- stupeň vzdělání MeSH
- věkové faktory MeSH
- věkové rozložení MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- práce podpořená grantem MeSH
- validační studie MeSH
... Hallmarks of data quality in chemical exposure assessment: Introduction -- What do we mean by "data" ... ... -- From exposure data quality to the quality of exposure assessments -- Conclusions ... ... - 5.2.2 Fuzzy methods 48 -- 5.2.3 Probabilistic methods 49 -- 5.2.4 Sensitivity analysis 58 -- 5.3 Data ... ... WHAT DO WE MEAN BY “DATA” IN EXPOSURE ASSESSMENT? 145 -- 3. ... ... FROM EXPOSURE DATA QUALITY TO THE QUALITY OF EXPOSURE ASSESSMENTS 155 -- 5. CONCLUSIONS 157 -- 6. ...
IPCS harmonization project document ; no. 6
xiii, 158 s. : il., tab. ; 30 cm
- MeSH
- hodnocení rizik MeSH
- nejistota MeSH
- sběr dat normy MeSH
- vystavení vlivu životního prostředí MeSH
- Konspekt
- Životní prostředí a jeho ochrana
- NLK Obory
- environmentální vědy
- NLK Publikační typ
- publikace WHO