BACKGROUND: The medication used to treat benign prostate hyperplasia (BPH), a common condition in men over 50 years of age, can alter the levels of biomarkers used in prostate cancer detection. Commonly used medications for BPH include alpha-blockers, 5-alpha reductase inhibitors (5-ARIs), and muscarinic antagonists. We studied the impact of these drugs on total prostate-specific antigen (tPSA), free PSA (fPSA), [-2]proPSA, fPSA/tPSA ratio, and the Prostate Health Index (PHI), as well as novel potential biomarkers in the form of glycan composition of fPSA. PATIENTS AND METHODS: Serum samples were collected from 564 males with BPH, with a mean age of 68.5 years. The samples were used to measure levels of tPSA, fPSA, and [-2]proPSA. The fPSA/tPSA and PHI were then calculated. The glycan composition of fPSA was analyzed using lectin-based glycoprofiling. Pharmacotherapy data was collected from the patients' medical records. RESULTS: Alpha-blocker monotherapy was associated with higher fPSA and fPSA/tPSA ratio, and decreased PHI. Levels of tPSA were not impacted. Alpha-blocker and 5-ARI dual therapy was associated with reduced levels of fPSA, [-2]proPSA, and PHI. Therapy combining alpha-blockers and antimuscarinic agents did not significantly influence biomarker levels apart from an increase in a Maackia amurensis lectin-recognized glycan originating in fPSA. CONCLUSION: BPH pharmacotherapy notably affects prostate cancer biomarkers. Recognizing the impact of pharmacotherapy is crucial for achieving an accurate diagnosis of prostate cancer and for planning treatment.
- MeSH
- Adrenergic alpha-Antagonists therapeutic use MeSH
- Muscarinic Antagonists * therapeutic use MeSH
- Glycosylation MeSH
- Prostatic Hyperplasia * blood drug therapy MeSH
- 5-alpha Reductase Inhibitors therapeutic use MeSH
- Middle Aged MeSH
- Humans MeSH
- Prostatic Neoplasms blood drug therapy MeSH
- Prostate pathology metabolism MeSH
- Prostate-Specific Antigen * blood MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
INTRODUCTION: The immunosuppressive roles of galectin-3 (Gal-3) in carcinogenesis make this lectin an attractive target for pharmacological inhibition in immunotherapy. Although current clinical immunotherapies appear promising in the treatment of solid tumors, their efficacy is significantly weakened by the hostile immunosuppressive tumor microenvironment (TME). Gal-3, a prominent TME modulator, efficiently subverts the elimination of cancer, either directly by inducing apoptosis of immune cells or indirectly by binding essential effector molecules, such as interferon-gamma (IFNγ). METHODS: N-(2-Hydroxypropyl)methacrylamide (HPMA)-based glycopolymers bearing poly-N-acetyllactosamine-derived tetrasaccharide ligands of Gal-3 were designed, synthesized, and characterized using high-performance liquid chromatography, dynamic light scattering, UV-Vis spectrophotometry, gel permeation chromatography, nuclear magnetic resonance, high-resolution mass spectrometry and CCK-8 assay for evaluation of glycopolymer non-toxicity. Pro-immunogenic effects of purified glycopolymers were tested by apoptotic assay using flow cytometry, competitive ELISA, and in vitro cell-free INFγ-based assay. RESULTS: All tested glycopolymers completely inhibited Gal-3-induced apoptosis of monocytes/macrophages, of which the M1 subtype is responsible for eliminating cancer cells during immunotherapy. Moreover, the glycopolymers suppressed Gal-3-induced capture of glycosylated IFNγ by competitive inhibition to Gal-3 carbohydrate recognition domain (CRD), which enables further inherent biological activities of this effector, such as differentiation of monocytes into M1 macrophages and repolarization of M2-macrophages to the M1 state. CONCLUSION: The prepared glycopolymers are promising inhibitors of Gal-3 and may serve as important supportive anti-cancer nanosystems enabling the infiltration of proinflammatory macrophages and the reprogramming of unwanted M2 macrophages into the M1 subtype.
- MeSH
- Acrylamides chemistry pharmacology MeSH
- Apoptosis drug effects MeSH
- Galectin 3 * antagonists & inhibitors MeSH
- Galectins MeSH
- Interferon-gamma * metabolism MeSH
- Blood Proteins MeSH
- Humans MeSH
- Macrophages drug effects MeSH
- Monocytes * drug effects MeSH
- Tumor Microenvironment drug effects MeSH
- Polymers * chemistry pharmacology MeSH
- Antineoplastic Agents * pharmacology chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
DC-SIGN, a C-type lectin receptor expressed on immune cells, is considered a promising target for immunomodulatory and antiviral therapies. While mannose-based glycomimetics have been extensively studied as DC-SIGN ligands, fucose-based strategies remain underexplored. This study explores the fucosylation of linear alcohols and sugars using eight different fucosyl donors, aiming at designing strategies for the development of fucose-based glycomimetics targeting DC-SIGN. Four types of leaving groups and two different acyl-based protecting groups on the donors were tested. The glycosylation of 3-azidopropan-1-ol exclusively yielded the β-anomer, demonstrating high stereoselectivity. The azido group in the product is versatile, allowing for direct click chemistry reactions or reduction to an amine for further functionalization. Both types of reactions were demonstrated in a model reaction. In the glycosylation of a sugar, a disaccharide moiety of Lewis X antigen was selected as a target molecule. Only one of the eight tested fucosyl donors worked well in this reaction and provided the product in a reasonable yield. The disaccharide was also equipped with the 3-azidopropyl linker, facilitating future modifications. Finally, NMR studies confirmed compatibility of the linker with canonical Ca2+-dependent carbohydrate binding to DC-SIGN, suggesting potential for further development of fucose-based glycomimetics targeting this C-type lectin receptor.
- MeSH
- Fucose * chemistry MeSH
- Glycosides * chemistry chemical synthesis pharmacology metabolism MeSH
- Glycosylation MeSH
- Lectins, C-Type * metabolism antagonists & inhibitors MeSH
- Humans MeSH
- Molecular Structure MeSH
- Cell Adhesion Molecules * metabolism antagonists & inhibitors MeSH
- Receptors, Cell Surface * metabolism antagonists & inhibitors MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
The inherent carbohydrate-binding specificities of human galectins can serve as recognition elements in both biotechnological and biomedical applications. The combination of the carbohydrate-recognition domain (CRD) of galectins fused to peptides or proteins for purification, immobilization, and imaging enables multifunctional utilization within a single protein. We present here a library of color-coded galectin fusion proteins that incorporate a His6-tag, a fluorescent protein, and a SpyCatcher or SpyTag unit to enable immobilization procedures. These galectin fusion proteins exhibit similar binding properties to the non-fused galectins with micromolar apparent binding affinities. N- and C-terminal fusion partners do not interfere with the SpyCatcher/SpyTag immobilization. By applying SpyCatcher/SpyTag-mediated SC-ST-Gal-3 conjugates, we show the stepwise formation of a three-layer ECM-like structure in vitro. Additionally, we demonstrate the SpyCatcher/SpyTag-mediated immobilization of galectins in microgels, which can serve as a transport platform for localized targeting applications. The proof of concept is provided by the galectin-mediated binding of microgels to colorectal cancer cells.
- MeSH
- Color MeSH
- Biocompatible Materials chemistry MeSH
- Galectins * chemistry metabolism MeSH
- Gels chemistry MeSH
- Humans MeSH
- Recombinant Fusion Proteins * chemistry metabolism genetics MeSH
- Protein Binding MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Advanced metastatic colorectal cancer (CRC) with deficient DNA mismatch repair (MMR-d), or immune-hot CRCs, show significantly improved clinical outcomes compared to MMR-proficient (MMR-p), or immune-cold CRCs. While the prior represents about 5% of all CRCs, the latter represent 95% and are characterized by low immunogenicity. This study investigates bis-diethyldithiocarbamate (CuET), a novel anticancer compound, and its impact on the colorectal cancer tumor microenvironment (TME). CuET is shown to convert immunologically inactive tumors into hotbeds of antitumor immune responses, marked by increased lymphocyte infiltration, heightened cytotoxicity of natural killer (NK) and T cells, and enhanced non-self recognition by lymphocytes. The potent anticancer cytotoxicity and in vivo safety and efficacy of CuET are established. In summary, CuET transforms the colorectal cancer TME, bolstering NK and T cell cytotoxicity and refining tumor cell recognition through non-classical activation via the NKG2D/NKG2DL axis. This study unveils a novel mechanism of action for CuET: a potent immunomodulator capable of turning cold tumors hot.
- MeSH
- Killer Cells, Natural immunology drug effects metabolism MeSH
- Ditiocarb * pharmacology MeSH
- Colorectal Neoplasms * drug therapy immunology metabolism pathology MeSH
- NK Cell Lectin-Like Receptor Subfamily K * metabolism MeSH
- Humans MeSH
- Copper MeSH
- Mice MeSH
- Cell Line, Tumor MeSH
- Tumor Microenvironment * drug effects immunology MeSH
- Antineoplastic Agents pharmacology MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Despite currently used intravesical therapies in non-muscle-invasive bladder cancer (NMIBC), the rate of intravesical recurrence remains very high. We aimed to evaluate the effectiveness of adding nonintravesical interventions to standard intravesical therapies to prevent intravesical recurrence. In April 2024, 3 databases were queried for prospective studies evaluating nonintravesical interventions in addition to standard intravesical therapies for NMIBC (CRD42024490988). The primary outcome was intravesical recurrence-free survival (iRFS). Standard pairwise meta-analyses were performed using hazard ratios (HR) and 95% confidence intervals (95% CI) with a random-effects model. We identified 18 eligible studies (14 RCTs and 4 prospective trials) comprising 4,593 NMIBC patients, which investigated pharmacological interventions (eg, selenium, vitamins, Lactobacillus casei, celecoxib, metformin, mistletoe lectin) and lifestyle modifications (diet). The addition of Lactobacillus casei significantly improved iRFS (HR: 0.50; 95% CI: 0.34-0.73; P < .001). A high western diet pattern significantly worsened iRFS (HR:1.48, 95%CI:1.06-2.06, P = .03). The other nonintravesical interventions were not associated with iRFS. Our comprehensive review of the published literature highlights the need for further research into the efficacy of nonvesical interventions for NMIBC. While Lactobacillus was shown to improve iRFS in 2 RCTs, additional high-quality randomized studies are required to evaluate the effectiveness of other interventions.
- MeSH
- Administration, Intravesical MeSH
- Celecoxib administration & dosage therapeutic use MeSH
- Lacticaseibacillus casei MeSH
- Humans MeSH
- Neoplasm Recurrence, Local * prevention & control MeSH
- Metformin therapeutic use administration & dosage MeSH
- Urinary Bladder Neoplasms * pathology drug therapy MeSH
- Probiotics administration & dosage therapeutic use MeSH
- Randomized Controlled Trials as Topic MeSH
- Selenium administration & dosage therapeutic use MeSH
- Vitamins administration & dosage therapeutic use MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
- Review MeSH
- Systematic Review MeSH
Komplementový systém je velmi důležitou složkou vrozené (tzv. nespecifické) imunity, která je součástí první linie obrany proti infekcím. Vedle toho hraje komplement významnou roli při odklízení apoptotických a poškozených endogenních buněk a podle nedávných objevů významnou měrou přispívá k homeostáze organismu. Komplementový systém zahrnuje několik desítek solubilních a membránově vázaných proteinů, které po aktivaci fungují jako kaskáda, na jejímž konci je likvidace infekčního agens. K aktivaci komplementu dochází jednou ze 3 cest (klasická, lektinová a alternativní) a všechny 3 cesty vedou k centrální složce C3. Štěpením C3 začíná aktivace tzv. efektorové terminální kaskády, která se prozánětlivými mechanismy, opsonizací a na konci vytvořením kanálu v bazální membráně podílí na eliminaci patogenů. Důležitou roli představuje systematická kontrola aktivace komplementu, protože jde o prevenci před poškozením vlastních tkání. Striktní kontrolu vyžaduje především alternativní cesta, která zajišťuje více než 80 % aktivity terminální kaskády komplementu. Dysregulace komplementu a zvl. jeho alternativní cesty stojí na pozadí mnoha závažných akutních i chronických onemocnění. Adresa pro korespondenci: Doc. MUDr. Eva Honsová, PhD. Unilabs Patologie Evropská 2589/33b 160 00 Praha 6 email: eva.honsova@unilabs.com
The complement system is an important component of innate immunity, which is part of the first line of defense against infections. In addition, complement plays an important role in the removal of apoptotic and damaged endogenous cells and, according to recent discoveries, contributes significantly to the homeostasis of the organism. The complement system includes several dozen soluble and membrane-bound proteins, which, after activation, function as a cascade, at the end of which is the elimination of the infectious agent. Complement activation occurs through one of 3 pathways (classical, lectin, and alternative) and all 3 pathways lead to the central C3 component. The cleavage of C3 starts the activation of the so-called effector terminal cascade, which participates in the elimination of pathogens through pro-inflammatory mechanisms, opsonization and, at the end, the creation of a channel in the basement membrane. The systematic control of complement activation plays an important role, because that represents prevention against damage to one’s own tissues. Especially, the alternative pathway, which provides more than 80% of the activity of the terminal complement cascade, requires tight control. Dysregulation of complement and especially its alternative pathways is behind many acute and chronic diseases.
- MeSH
- Complement Activation * physiology immunology MeSH
- Complement Pathway, Alternative physiology immunology MeSH
- Atypical Hemolytic Uremic Syndrome genetics physiopathology pathology MeSH
- Complement System Proteins * physiology immunology adverse effects MeSH
- Humans MeSH
- Kidney Diseases physiopathology pathology MeSH
- Thrombotic Microangiopathies genetics physiopathology pathology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Review MeSH
PURPOSE: The use of inotuzumab ozogamicin (InO), a conjugated anti-CD22 monoclonal antibody, is becoming a promising frontline treatment for older patients with ALL. PATIENTS AND METHODS: EWALL-INO is an open-label prospective multicenter phase II trial (ClinicalTrials.gov identifier: NCT03249870). Patients age 55 years and older with newly diagnosed CD22+ Philadelphia chromosome-negative (Ph-) B-cell precursor (BCP) ALL were eligible. After a prephase, a first induction consisting of vincristine, dexamethasone, and three injections of InO (0.8 mg/m2 day 1, 0.5 mg/m2 day 8/day 15) was followed by a second induction combining cyclophosphamide, dexamethasone, and two injections of InO (0.5 mg/m2 day 1/day 8). Responders received up to six cycles of chemotherapy consolidation and 18-month chemotherapy maintenance. Allotransplant was allowed after three consolidations. The primary end point was 1-year overall survival (OS). RESULTS: Between December 2017 and March 2022, 131 patients (median age 68 years) were included. Three patients died during induction 1 (n = 130), two from multiple organ failure and one from hemorrhage, and none during induction 2 (n = 120). After induction 2, 90% of the patients achieved complete remission (CR) or CR with incomplete platelet recovery (CRp) and 80% had measurable residual disease (MRD2) <10-4. Among responders (n = 119), 47 relapsed and 14 died in CR/CRp. One-year OS, relapse-free survival (RFS), and cumulative incidence of relapse (CIR) rates were 73.2%, 66%, and 25%, respectively. High-risk cytogenetics and lower CD22 expression (<70%) were associated with worse OS, while both high-risk cytogenetics and MRD2 ≥10-4 were associated with lower RFS and higher CIR. The 10 allotransplanted patients had very favorable outcomes (90% 2-year OS/RFS and no relapse). Only one nonfatal sinusoidal obstructive syndrome was documented during the study. CONCLUSION: Our results support InO's use in first-line regimens for older patients with CD22+ Ph- BCP-ALL.
- MeSH
- Sialic Acid Binding Ig-like Lectin 2 * MeSH
- Cyclophosphamide administration & dosage therapeutic use MeSH
- Dexamethasone administration & dosage therapeutic use MeSH
- Philadelphia Chromosome MeSH
- Inotuzumab Ozogamicin * therapeutic use MeSH
- Middle Aged MeSH
- Humans MeSH
- Precursor B-Cell Lymphoblastic Leukemia-Lymphoma * drug therapy mortality genetics MeSH
- Prospective Studies MeSH
- Antineoplastic Combined Chemotherapy Protocols * therapeutic use MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Vincristine administration & dosage therapeutic use MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial, Phase II MeSH
- Multicenter Study MeSH
The castor plant (Ricinus communis) is primarily known for its seeds, which contain a unique fatty acid called ricinoleic acid with several industrial and commercial applications. Castor seeds also contain ricin, a toxin considered a chemical and biological warfare agent. Despite years of investigation, there is still no effective antidote or vaccine available. However, some progress has been made, and the development of an effective treatment may be on the horizon. To provide an updated overview of this issue, we have conducted a comprehensive review of the literature on the current state of research in the fight against ricin. This review is based on the reported research and aims to address the challenges faced by researchers, as well as highlight the most successful cases achieved thus far. Our goal is to encourage the scientific community to continue their efforts in this critical search.
- MeSH
- Antidotes * chemistry pharmacology MeSH
- Chemical Warfare Agents chemistry MeSH
- Humans MeSH
- Ricin * antagonists & inhibitors chemistry MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: The mammalian Natural Killer Complex (NKC) harbors genes and gene families encoding a variety of C-type lectin-like proteins expressed on various immune cells. The NKC is a complex genomic region well-characterized in mice, humans and domestic animals. The major limitations of automatic annotation of the NKC in non-model animals include short-read based sequencing, methods of assembling highly homologous and repetitive sequences, orthologues missing from reference databases and weak expression. In this situation, manual annotations of complex genomic regions are necessary. METHODS: This study presents a manual annotation of the genomic structure of the NKC region in a high-quality reference genome of the domestic cat and compares it with other felid species and with representatives of other carnivore families. Reference genomes of Carnivora, irrespective of sequencing and assembly methods, were screened by BLAST to retrieve information on their killer cell lectin-like receptor (KLR) gene content. Phylogenetic analysis of in silico translated proteins of expanded subfamilies was carried out. RESULTS: The overall genomic structure of the NKC in Carnivora is rather conservative in terms of its C-type lectin receptor gene content. A novel KLRH-like gene subfamily (KLRL) was identified in all Carnivora and a novel KLRJ-like gene was annotated in the Mustelidae. In all six families studied, one subfamily (KLRC) expanded and experienced pseudogenization. The KLRH gene subfamily expanded in all carnivore families except the Canidae. The KLRL gene subfamily expanded in carnivore families except the Felidae and Canidae, and in the Canidae it eroded to fragments. CONCLUSIONS: Knowledge of the genomic structure and gene content of the NKC region is a prerequisite for accurate annotations of newly sequenced genomes, especially of endangered wildlife species. Identification of expressed genes, pseudogenes and gene fragments in the context of expanded gene families would allow the assessment of functionally important variability in particular species.
- MeSH
- Molecular Sequence Annotation MeSH
- Killer Cells, Natural * immunology metabolism MeSH
- Carnivora * genetics MeSH
- Phylogeny * MeSH
- Genome MeSH
- Genomics * methods MeSH
- Cats genetics MeSH
- Lectins, C-Type genetics MeSH
- Animals MeSH
- Check Tag
- Cats genetics MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH