Machining
Dotaz
Zobrazit nápovědu
This study investigated the properties of Ti-6Al-4V alloy after surface treatment by the electric discharge machining (EDM) process. The EDM process with high peak currents proved to induce surface macro-roughness and to cause chemical changes to the surface. Evaluations were made of the mechanical properties by means of tensile tests, and of surface roughness for different peak currents of the EDM process. The EDM process with peak current of 29 A was found to induce sufficient surface roughness, and to have a low adverse effect on tensile properties. The chemical changes were studied by scanning electron microscopy equipped with an energy dispersive X-ray analyser (EDX). The surface of the benchmark samples was obtained by plasma-spraying a titanium dioxide coating. An investigation of the biocompatibility of the surface-treated Ti-6Al-4V samples in cultures of human osteoblast-like MG 63 cells revealed that the samples modified by EDM provided better substrates for the adhesion, growth and viability of MG 63 cells than the TiO2 coated surface. Thus, EDM treatment can be considered as a promising surface modification to orthopaedic implants, in which good integration with the surrounding bone tissue is required.
- MeSH
- biokompatibilní materiály chemie MeSH
- biokompatibilní potahované materiály chemie MeSH
- kosti a kostní tkáň MeSH
- lidé MeSH
- povrchové vlastnosti MeSH
- protézy a implantáty MeSH
- slitiny chemie MeSH
- testování materiálů MeSH
- titan chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Digitalizace postupně proniká do velké části medicínských oblastí včetně patologie. Společně s digitálním zpracováním dat přichází aplikace metod umělé inteligence za účelem zjednodušení rutinních procesů, zvýšení bezpečnosti apod. Ačkoliv se obecné povědomí o metodách umělé inteligence zvyšuje, stále není pravidlem, že by odborníci z netechnických oborů měli detailní představu o tom, jak takové systémy fungují a jak se učí. Cílem tohoto textu je přístupnou formou vysvětlit základy strojového učení s využitím příkladů a ilustrací z oblasti digitální patologie. Nejedná se samozřejmě o ucelený přehled ani o představení nejmodernějších metod. Držíme se spíše úplných základů a představujeme fundamentální myšlenky, které stojí za většinou učících systémů, s použitím nejjednodušších modelů. V textu se věnujeme zejména rozhodovacím stromům, jejichž funkce je snadno vysvětlitelná, a elementárním neuronovým sítím, které jsou hlavním modelem používaným v dnešní umělé inteligenci. Pokusíme se také popsat postup spolupráce mezi lékaři, kteří dodávají data, a informatiky, kteří s jejich pomocí vytvářejí učící systémy. Věříme, že tento text pomůže překlenout rozdíly mezi znalostmi lékařů a informatiků a tím přispěje k efektivnější mezioborové spolupráci.
Digitalization has gradually made its way into many areas of medicine, including pathology. Along with digital data processing comes the application of artificial intelligence methods to simplify routine processes, enhance safety, etc. Although general awareness of artificial intelligence methods is increasing, it is still not common for professionals from non-technical fields to have a detailed understanding of how such systems work and learn. This text aims to explain the basics of machine learning in an accessible way using examples and illustrations from digital pathology. This is not intended to be a comprehensive overview or an introduction to cutting-edge methods. Instead, we use the simplest models to focus on fundamental concepts behind most learning systems. The text concentrates on decision trees, whose functionality is easy to explain, and basic neural networks, the primary models used in today’s artificial intelligence. We also attempt to describe the collaborative process between medical specialists, who provide the data, and computer scientists, who use this data to develop learning systems. This text will help bridge the knowledge gap between medical professionals and computer scientists, contributing to more effective interdisciplinary collaboration.
- MeSH
- lidé MeSH
- patologie * trendy MeSH
- strojové učení * trendy MeSH
- umělá inteligence trendy MeSH
- Check Tag
- lidé MeSH
Digitalizace laboratoří, aplikace big dat a automatizovaná strojová diagnostika ("machine learning") jsou nástroji pro vznik a fungování toho, co se označuje jako precizní medicína. Genomika, její dominantní metody (qPCR, dPCR, ddPCR, NGS), produkující obrovská kvanta dat (big data) a schopnosti počítačových systémů tyto soubory dat využívat v diagnostice a terapii za významného přispění "umělé inteligence" se označují jako strojová automatizovaná diagnostika - machine learning respektive deep learning). Tyto postupy pronikají z průmyslu a výzkumu do rutinní medicíny včetně medicíny laboratorní. Zvládnutí technických a personálních problémů těchto změn bude stát značné úsilí, srovnatelné s před lety realizovanou přeměnou manuální laboratorní práce na automatizovanou činnost a s přeměnou papírové dokumentace výsledků na laboratorní a nemocniční informační systémy. Lze předpokládat nejen zásadní změny metod laboratorní práce, ale i změny požadavků na odbornost personálu laboratoří a rovněž lze předpokládat nevyhnutelnost radikálního ovlivnění činnosti klinických laboratoří. Etický rozměr nastávajících změn bude stejně závažný, jako ten technický a bude možné očekávat nejen významný progres v diagnostice e prognostice chorob, ale i vzestup rizika zdravotní péče v případě chyb a neprofesionality. Automatická strojová aplikace big dat a používání umělé inteligence jsou náročné, je s nimi v medicíně málo zkušeností, ale vyhnout se jim nebude možné.
Digitalization of clinical laboratories, application of big data and methods of machine learning re contemporary tools for precision medicine. Precision medicine is based mainly on the genomic methods, namely of dominant PCR and NGS methods. These methods produces enormous number of dates (big data) and can be explored by means of artificial intelligence in processes called machine learning. Machine learning was primarily used in industry and research and now contemporary penetrates into medicine and also to laboratory medicine. Methods based on the big data and artificial intelligence with exploration of big data is certainly very important factor of future of medicine. It will be needs large requirements not only on high-technology equipment, but also for new type of young laboratory Professional used basically new methods of work and mind. Machine learning, part of precision medicine, necessary namely for oncology and prediction of patients state crettemeans also lot of new types of ethical problems. These ethical questions and problems should be soluted immediately, parallel with introduction of machine learning to laboratory practice.
- MeSH
- aerosoly MeSH
- dýchací soustava patologie MeSH
- hygiena práce MeSH
- lidé MeSH
- oleje MeSH
- znečištění ovzduší MeSH
- Check Tag
- lidé MeSH
Investigating microorganisms in metal-enriched environments holds the potential to revolutionize the sustainable recovery of critical metals such as lanthanides (Ln3+). We observe Hyphomicrobium spp. as part of a Fe2+/Mn2+-oxidizing consortia native to the ferruginous bottom waters of a Ln3+-enriched lake in Czechia. Notably, one species shows similarities to recently discovered bacteria expressing proteins with picomolar Ln3+ affinity. This finding was substantiated by developing an in-silico ionic competition model and recombinant expression of a homolog protein (Hm-LanM) from Hyphomicrobium methylovorum. Biochemical assays validate Hm-LanM preference for lighter Ln3+ ions (from lanthanum to gadolinium). This is comparable to established prototypes. Bioinformatics analyses further uncover additional H. methylovorum metabolic biomolecules in genomic proximity to Hm-LanM analogously dependent on Ln3+, including an outer membrane receptor that binds Ln3+-chelating siderophores. These combined observations underscore the remarkable strategy of Hyphomicrobium spp. for thriving in relatively Ln3+ enriched zones of metal-polluted environments.
In response to our study, the commentary by Infanti et al. (2024) raised critical points regarding (i) the conceptualization and utility of the user-avatar bond in addressing gaming disorder (GD) risk, and (ii) the optimization of supervised machine learning techniques applied to assess GD risk. To advance the scientific dialogue and progress in these areas, the present paper aims to: (i) enhance the clarity and understanding of the concepts of the avatar, the user-avatar bond, and the digital phenotype concerning gaming disorder (GD) within the broader field of behavioral addictions, and (ii) comparatively assess how the user-avatar bond (UAB) may predict GD risk, by both removing data augmentation before the data split and by implementing alternative data imbalance treatment approaches in programming.
- MeSH
- avatar MeSH
- lidé MeSH
- netholismus * MeSH
- řízené strojové učení MeSH
- strojové učení * MeSH
- uživatelské rozhraní počítače MeSH
- videohry MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Pathophysiological recordings of patients measured from various testing methods are frequently used in the medical field for determining symptoms as well as for probability prediction for selected diseases. There are numerous symptoms among the Parkinson's disease (PD) population, however changes in speech and articulation – is potentially the most significant biomarker. This article is focused on PD diagnosis classification based on their speech signals using pattern recognition methods (AdaBoost, Bagged trees, Quadratic SVM and k-NN). The dataset investigated in the article consists of 30 PD and 30 HC individuals' voice measurements, with each individual being represented with 2 recordings within the dataset. Training signals for PD and HC underwent an extraction of relatively well-discriminating features relating to energy and spectral speech properties. Model implementations included a 5-fold cross validation. The accuracy of the values obtained employing the models was calculated using the confusion matrix. The average value of the overall accuracy = 82.3 % and averaged AUC = 0.88 (min. AUC = 0.86) on the available data.
TransCelerate reports on the results of 2019, 2020, and 2021 member company (MC) surveys on the use of intelligent automation in pharmacovigilance processes. MCs increased the number and extent of implementation of intelligent automation solutions throughout Individual Case Safety Report (ICSR) processing, especially with rule-based automations such as robotic process automation, lookups, and workflows, moving from planning to piloting to implementation over the 3 survey years. Companies remain highly interested in other technologies such as machine learning (ML) and artificial intelligence, which can deliver a human-like interpretation of data and decision making rather than just automating tasks. Intelligent automation solutions are usually used in combination with more than one technology being used simultaneously for the same ICSR process step. Challenges to implementing intelligent automation solutions include finding/having appropriate training data for ML models and the need for harmonized regulatory guidance.
- MeSH
- automatizace MeSH
- farmakovigilance * MeSH
- lidé MeSH
- strojové učení MeSH
- technologie MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH