Propiconazole is a triazole fungicide previously shown to induce triglyceride accumulation in human liver HepaRG cells, potentially via activation of the Pregnane X Receptor (PXR). However, whether propiconazole can disrupt hepatic and whole-body metabolism in vivo is currently unknown. Therefore, we aimed to examine the metabolic effects of propiconazole in the context of metabolic dysfunction-associated steatotic liver disease (MASLD), obesity, and insulin resistance. To this end, male C57BL/6J mice were fed a high-fat diet for 20 weeks. During the last 10 weeks, mice additionally received vehicle, 0.04, 30, or 100 mg/kg body weight (bw)/day propiconazole via oral gavage. High-dose propiconazole, but not low or intermediate dose, reduced body weight gain and adipose tissue weight in obese mice. Mice receiving high-dose propiconazole displayed improved glucose tolerance and reduced levels of plasma triglycerides and cholesterol. Propiconazole dose-dependently increased liver weight and triglyceride levels and at high dose caused signs of hepatic inflammation. RNA sequencing on the liver revealed that propiconazole mainly induced PXR target genes. At intermediate and high dose, propiconazole induced pathways related to cell-cell interactions and inflammation, while oxidative phosphorylation was repressed by propiconazole. Comparison of gene regulation in wildtype and PXR knockout primary hepatocytes as well as gene reporter assays confirmed the activation of PXR by propiconazole. All in all, our data underscore the capacity of propiconazole to activate PXR in the liver and thereby promote the development of hepatic steatosis in vivo.
- MeSH
- Diet, High-Fat * MeSH
- Insulin Resistance MeSH
- Liver drug effects metabolism pathology MeSH
- Disease Models, Animal MeSH
- Mice, Inbred C57BL * MeSH
- Mice MeSH
- Obesity * chemically induced MeSH
- Pregnane X Receptor * metabolism genetics MeSH
- Fungicides, Industrial * toxicity MeSH
- Triazoles * toxicity MeSH
- Triglycerides blood metabolism MeSH
- Dose-Response Relationship, Drug MeSH
- Fatty Liver * chemically induced MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Presensitized patients with circulating donor-specific antibodies (DSAs) before transplantation are at risk for antibody-mediated rejection (AMR). Peritransplant desensitization mitigates but does not eliminate the alloimmune response. We examined the possibility that subthreshold AMR activity undetected by histology could be operating in some early biopsies. METHODS: Transcriptome of kidney allograft biopsies performed within the first month in presensitized patients (DSA+) who had received desensitization and did not develop active/probable AMR by histology (R-) was compared with biopsies showing active/probable AMR (R+/DSA+). As negative controls, biopsies without rejection by histology in patients without DSA at transplantation were used (R-/DSA-). RNA sequencing from biopsies selected from the biobank was used in cohort 1 (n = 32) and microarray, including the molecular microscope (Molecular Microscope Diagnostic System [MMDx]) algorithm, in recent cohort 2 (n = 30). RESULTS: The transcriptome of R-/DSA+ was similar to R+/DSA+ as these groups differed in 14 transcripts only. Contrarily, large differences were found between both DSA+ groups and negative controls. Fast gene set enrichment analyses showed upregulation of the immune system in both DSA+ groups (gene ontology terms: adaptive immune response, humoral immune response, antigen receptor-mediated signaling, and B-cell receptor signaling or complement activation) when compared with negative controls. MMDx assessment in cohort 2 classified 50% of R-/DSA+ samples as AMR and found no differences in AMR molecular scores between R+ and R- DSA+ groups. In imlifidase desensitization, MMDx series showed a gradual increase in AMR scores over time. CONCLUSIONS: Presensitized kidney transplant recipients exhibited frequent molecular calls of AMR in biopsy-based transcript diagnostics despite desensitization therapy and negative histology.
- Publication type
- Journal Article MeSH
Chronic intestinal inflammation significantly contributes to the development of colorectal cancer and remains a pertinent clinical challenge, necessitating novel therapeutic approaches. Indole-based microbial metabolite mimics Felix Kopp Kortagere 6 (FKK6), which is a ligand and agonist of the pregnane X receptor (PXR), was recently demonstrated to have PXR-dependent anti-inflammatory and protective effects in a mouse model of dextran sodium sulfate (DSS)-induced acute colitis. Here, we examined the therapeutic potential of FKK6 in a mouse model (C57BL/6 FVB humanized PXR mice) of colitis-associated colon cancer (CAC) induced by azoxymethane and DSS. FKK6 (2 mg/kg) displayed substantial antitumor activity, as revealed by reduced size and number of colon tumors, improved colon histopathology, and decreased expression of tumor markers (c-MYC, β-catenin, Ki-67, and cyclin D) in the colon. In addition, we carried out a chronic toxicity (30 days) assessment of FKK6 (1 mg/kg and 2 mg/kg) in C57BL/6 mice. Histological examination of tissues, biochemical blood analyses, and immunohistochemical staining for Ki-67 and γ-H2AX showed no difference between FKK6-treated and control mice. Comparative metabolomic analyses in mice exposed for 5 days to DSS and administered with FKK6 (0.4 mg/kg) revealed no significant effects on several classes of metabolites in the mouse fecal metabolome. Ames and micronucleus tests showed no genotoxic and mutagenic potential of FKK6 in vitro. In conclusion, anticancer effects of FKK6 in azoxymethane/DSS-induced CAC, together with FKK6 safety data from in vitro tests and in vivo chronic toxicity study, and comparative metabolomic study, are supportive of the potential therapeutic use of FKK6 in the treatment of CAC. SIGNIFICANCE STATEMENT: Microbial metabolite mimicry proposes that chemical mimics of microbial metabolites that serve to protect hosts against aberrant inflammation in the gut could serve as a new paradigm for the development of drugs targeting inflammatory bowel disease if, like the parent metabolite, is devoid of toxicity but more potent against the microbial metabolite receptor. We identified a chemical mimic of Felix Kopp Kortagere 6, and we propose that Felix Kopp Kortagere 6 is devoid of toxicity yet significantly reduces tumor formation in an azoxymethane-dextran sodium sulfate model of murine colitis-induced colon cancer.
- MeSH
- Azoxymethane toxicity MeSH
- Chronic Disease MeSH
- Indoles pharmacology therapeutic use MeSH
- Colitis drug therapy chemically induced metabolism pathology MeSH
- Colorectal Neoplasms * drug therapy metabolism pathology MeSH
- Disease Models, Animal * MeSH
- Molecular Mimicry MeSH
- Mice, Inbred C57BL * MeSH
- Mice MeSH
- Colitis-Associated Neoplasms pathology drug therapy metabolism MeSH
- Dextran Sulfate toxicity MeSH
- Inflammation drug therapy metabolism MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Impaired fibroblast growth factor receptor (FGFR) signaling is associated with many human conditions, including growth disorders, degenerative diseases, and cancer. Current FGFR therapeutics are based on chemical inhibitors of FGFR tyrosine kinase activity (TKIs). However, FGFR TKIs are limited in their target specificity as they generally inhibit all FGFRs and other receptor tyrosine kinases. In the search for specific inhibitors of human FGFR1, we identified VZ23, a DNA aptamer that binds to FGFR1b and FGFR1c with a KD of 55 nM and 162 nM, respectively, but not to the other FGFR variants (FGFR2b, FGFR2c, FGFR3b, FGFR3c, FGFR4). In cells, VZ23 inhibited the activation of downstream FGFR1 signaling and FGFR1-mediated regulation of cellular senescence, proliferation, and extracellular matrix homeostasis. Consistent with the specificity toward FGFR1 observed in vitro, VZ23 did not inhibit FGFR2-4 signaling in cells. We show that the VZ23 inhibits FGFR1 signaling in the presence of cognate fibroblast growth factor (FGF) ligands and its inhibitory activity is linked to its capacity to form unusual G-quadruplex structure. Our data suggest that targeting FGFR1 with DNA aptamers could be an effective alternative to TKIs for treating impaired FGFR1 signaling in human craniosynostoses.
- Publication type
- Journal Article MeSH
BACKGROUND: Modafinil is primarily used to treat narcolepsy but is also used as an off-label cognitive enhancer. Functional magnetic resonance imaging studies indicate that modafinil modulates the connectivity of neocortical networks primarily involved in attention and executive functions. However, much less is known about the drug's effects on subcortical structures. Following preliminary findings, we evaluated modafinil's activity on the connectivity of distinct cerebellar regions with the neocortex. We assessed the spatial relationship of these effects with the expression of neurotransmitter receptors/transporters. METHODS: Patterns of resting-state functional magnetic resonance imaging connectivity were estimated in 50 participants from scans acquired pre- and postadministration of a single (100 mg) dose of modafinil (n = 25) or placebo (n = 25). Using specific cerebellar regions as seeds for voxelwise analyses, we examined modafinil's modulation of cerebellar-neocortical connectivity. Next, we conducted a quantitative evaluation of the spatial overlap between the modulation of cerebellar-neocortical connectivity and the expression of neurotransmitter receptors/transporters obtained by publicly available databases. RESULTS: Modafinil increased the connectivity of crus I and vermis IX with prefrontal regions. Crus I connectivity changes were associated with the expression of dopaminergic D2 receptors. The vermis I-II showed enhanced coupling with the dorsal anterior cingulate cortex and matched the expression of histaminergic H3 receptors. The vermis VII-VIII displayed increased connectivity with the visual cortex, an activity associated with dopaminergic and histaminergic neurotransmission. CONCLUSIONS: Our study reveals modafinil's modulatory effects on cerebellar-neocortical connectivity. The modulation mainly involves crus I and the vermis and spatially overlaps the distribution of dopaminergic and histaminergic receptors.
- MeSH
- Adult MeSH
- Humans MeSH
- Magnetic Resonance Imaging * MeSH
- Young Adult MeSH
- Modafinil * pharmacology administration & dosage MeSH
- Cerebellum * drug effects diagnostic imaging metabolism MeSH
- Neocortex drug effects metabolism diagnostic imaging MeSH
- Neural Pathways drug effects metabolism MeSH
- Wakefulness-Promoting Agents pharmacology MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH
Bardet-Biedl syndrome (BBS) is a pleiotropic ciliopathy caused by dysfunction of the BBSome, a cargo adaptor essential for export of transmembrane receptors from cilia. Although actin-dependent ectocytosis has been proposed to compensate defective cargo retrieval, its molecular basis remains unclear, especially in relation to BBS pathology. In this study, we investigated how actin polymerization and ectocytosis are regulated within the cilium. Our findings reveal that ciliary CDC42, a RHO-family GTPase triggers in situ actin polymerization, ciliary ectocytosis, and cilia shortening in BBSome-deficient cells. Activation of the Sonic Hedgehog pathway further enhances CDC42 activity specifically in BBSome-deficient cilia. Inhibition of CDC42 in BBSome-deficient cells decreases the frequency and duration of ciliary actin polymerization events, causing buildup of G protein coupled receptor 161 (GPR161) in bulges along the axoneme during Sonic Hedgehog signaling. Overall, our study identifies CDC42 as a key trigger of ciliary ectocytosis. Hyperactive ciliary CDC42 and ectocytosis and the resulting loss of ciliary material might contribute to BBS disease severity.
- MeSH
- Actins * metabolism MeSH
- Bardet-Biedl Syndrome metabolism genetics pathology MeSH
- cdc42 GTP-Binding Protein * metabolism genetics MeSH
- Cilia * metabolism MeSH
- Humans MeSH
- Mice MeSH
- Hedgehog Proteins * metabolism MeSH
- Receptors, G-Protein-Coupled metabolism genetics MeSH
- Signal Transduction * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
INTRODUCTION: The E3 ubiquitin ligase Cbl-b is a novel target in immune-oncology, with critical roles in regulating T-cell activation and signaling pathways. By facilitating the ubiquitination and degradation of key signaling proteins, Cbl-b modulates immune responses, maintaining immune homeostasis and preventing unwarranted T-cell proliferation. The therapeutic potential of Cbl-b as a cancer immunotherapy target is underscored by its contribution to an immunosuppressive tumor microenvironment, with efforts currently underway to develop small-molecule inhibitors. AREAS COVERED: We reviewed the small molecules, and antibody-drug conjugates targeting Cbl-b from 2018 to 2024. The patents were gathered through publicly available databases and analyzed with in-house developed cheminformatic workflow, described within the manuscript. EXPERT OPINION: Targeting Cbl-b presents a promising approach in immuno-oncology, offering a novel pathway to potentiate the immune system's ability to combat cancer beyond PDL1/PD1 inhibition. The development and clinical advancement of Cbl-b inhibitors, as evidenced by the ongoing trials, mark a significant step toward harnessing this target for therapeutic benefits. Overall, the strategic inhibition of Cbl-b holds substantial promise for improving cancer immunotherapy outcomes, heralding a new era in the fight against cancer.
- MeSH
- Adaptor Proteins, Signal Transducing MeSH
- Molecular Targeted Therapy * MeSH
- Immunoconjugates pharmacology MeSH
- Immunotherapy * methods MeSH
- Humans MeSH
- Tumor Microenvironment * immunology MeSH
- Neoplasms * immunology drug therapy MeSH
- Patents as Topic * MeSH
- Antineoplastic Agents pharmacology MeSH
- Proto-Oncogene Proteins c-cbl * immunology antagonists & inhibitors MeSH
- Signal Transduction drug effects MeSH
- T-Lymphocytes immunology drug effects MeSH
- Drug Development * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
The aim of the present study was to assess systemic circulatory and tissue activities of both the classical arm and of the alternative arm of the renin-angiotensin system (RAS) in a new transgenic rat line (TG7371) that expresses angiotensin-(1-7) (ANG 1-7)-producing fusion protein; the results were compared with the activities measured in control transgene-negative Hannover Sprague-Dawley (HanSD) rats. Plasma and tissue concentrations of angiotensin II (ANG II) and ANG 1-7, and kidney mRNA expressions of receptors responsible for biological actions of ANG II and ANG 1-7 [i.e. ANG II type 1 and type 2 (AT1 and AT2) and Mas receptors] were assessed in TG7371 transgene-positive and in HanSD rats. We found that male TG7371 transgene-positive rats exhibited significantly elevated plasma, kidney, heart and lung ANG 1-7 concentrations as compared with control male HanSD rats; by contrast, there was no significant difference in ANG II concentrations and no significant differences in mRNA expression of AT1, AT2 and Mas receptors. In addition, we found that in male TG7371 transgene-positive rats blood pressure was lower than in male HanSD rats. These data indicate that the balance between the classical arm and the alternative arm of the RAS was in male TGR7371 transgene-positive rats markedly shifted in favor of the latter. In conclusion, TG7371 transgene-positive rats represent a new powerful tool to study the long-term role of the alternative arm of the RAS in the pathophysiology and potentially in the treatment of cardio-renal diseases.
- MeSH
- Angiotensin I * metabolism MeSH
- Angiotensin II * MeSH
- Cardiovascular Diseases metabolism genetics MeSH
- Blood Pressure physiology MeSH
- Rats MeSH
- Kidney metabolism MeSH
- Kidney Diseases metabolism genetics MeSH
- Peptide Fragments * metabolism MeSH
- Rats, Sprague-Dawley * MeSH
- Rats, Transgenic * MeSH
- Proto-Oncogene Mas MeSH
- Receptor, Angiotensin, Type 1 genetics metabolism MeSH
- Receptors, G-Protein-Coupled genetics metabolism MeSH
- Recombinant Fusion Proteins metabolism MeSH
- Renin-Angiotensin System * physiology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
INTRODUCTION/AIMS: Prospective, randomized, controlled trials of intravenous immunoglobulin (IVIG) maintenance therapy in myasthenia gravis (MG) are lacking. In this trial, we evaluated the safety and efficacy of caprylate/chromatography-purified IVIG; (IGIV-C) in patients with generalized MG undergoing standard care. METHODS: Sixty-two patients enrolled in this phase 2, multicenter, international, randomized trial (1:1 IGIV-C [2 g/kg loading dose; 1 g/kg every 3 weeks through week 21] or placebo). Efficacy was assessed by changes in Quantitative MG (QMG) score at week 24 versus baseline (primary endpoint) and percentage of patients with clinical improvement in QMG, MG Composite (MGC), and MG-Activities of Daily Living (MG-ADL) scores (secondary endpoints). Safety assessments reported all adverse events (AEs). RESULTS: The change in QMG at 24 weeks was -5.1 for IGIV-C and -3.1 for placebo (p = .187). Seventy percent of patients in the IGIV-C group had improvement in MG-ADL (≥2-point decrease) versus 40.6% in the placebo group (p = .025). Patients showing clinical improvement in QMG and MGC (≥3-point decrease) were 70.0% for IGIV-C versus 59.4% for placebo (p = .442) and 60.0% for IGIV-C versus 53.1% for placebo (p = .610). IGIV-C was well tolerated; serious AEs were similar between arms. Three of four MG exacerbations requiring hospitalizations occurred in the IGIV-C arm with one death. DISCUSSION: Several efficacy parameters showed numerical results greater than those seen in the placebo group. This was a small study and may have been underpowered to see significant differences. Additional studies may be warranted to fully determine the efficacy of IVIG maintenance therapy in MG.
- MeSH
- Autoantibodies blood MeSH
- Activities of Daily Living MeSH
- Adult MeSH
- Double-Blind Method MeSH
- Immunologic Factors therapeutic use adverse effects administration & dosage MeSH
- Immunoglobulins, Intravenous * therapeutic use adverse effects administration & dosage MeSH
- Middle Aged MeSH
- Humans MeSH
- Myasthenia Gravis * drug therapy MeSH
- Prospective Studies MeSH
- Receptors, Cholinergic * immunology MeSH
- Aged MeSH
- Treatment Outcome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial, Phase II MeSH
- Multicenter Study MeSH
- Randomized Controlled Trial MeSH
BACKGROUND: Despite secondary prevention with aspirin, patients with stable cardiovascular disease (CVD) remain at elevated long-term risk of major adverse cardiovascular events. The Cardiovascular Outcomes in People Using Anticoagulant Strategies (COMPASS) double-blind, randomized clinical trial demonstrated that aspirin plus low-dose rivaroxaban (COMPASS regime) significantly decreased the incidence of major adverse cardiovascular events by 24% compared with aspirin alone. However, the mechanisms underlying these potential synergistic/nonantithrombotic effects remain elusive. Extracellular vesicles (EVs) are crucial messengers regulating a myriad of biological/pathological processes and are highly implicated in CVD. OBJECTIVES: We hypothesized that circulating EV profiles reflect the cardioprotective properties of the COMPASS regime. METHODS: A cohort of stable CVD patients (N = 40) who participated in the COMPASS trial and were previously randomized to receive aspirin were prospectively recruited and assigned a revised regimen of open-label aspirin plus rivaroxaban. Blood samples were obtained at baseline (aspirin only) and 6-month follow-up. Plasma EV concentration, size, and origin were analyzed by nanoparticle tracking analysis and flow cytometry. EVs were enriched by ultracentrifugation for proteomic analysis. RESULTS: The COMPASS regime fundamentally altered small (<200 nm) and large (200-1000 nm) EV concentration and size compared with aspirin alone. Crucially, levels of platelet-derived and myeloperoxidase-positive EVs became significantly decreased at follow-up. Comparative proteomic characterization further revealed a significant decrease in highly proinflammatory protein expression at follow-up. CONCLUSION: The observed changes in EV subpopulations, together with the differential protein expression profiles, suggest amelioration of an underlying proinflammatory and prothrombotic state upon dual therapy, which may be of clinical relevance toward understanding the fundamental mechanism underlying the reported superior cardiovascular outcomes associated with this antithrombotic regimen.
- MeSH
- Aspirin * administration & dosage therapeutic use adverse effects MeSH
- Double-Blind Method MeSH
- Extracellular Vesicles * metabolism drug effects MeSH
- Platelet Aggregation Inhibitors * administration & dosage adverse effects therapeutic use MeSH
- Factor Xa Inhibitors * administration & dosage adverse effects therapeutic use MeSH
- Cardiovascular Diseases * blood prevention & control drug therapy MeSH
- Drug Therapy, Combination * MeSH
- Middle Aged MeSH
- Humans MeSH
- Inflammation Mediators blood MeSH
- Prospective Studies MeSH
- Proteomics methods MeSH
- Rivaroxaban * administration & dosage MeSH
- Aged MeSH
- Thrombosis blood prevention & control drug therapy MeSH
- Treatment Outcome MeSH
- Inflammation blood MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH