Impaired fibroblast growth factor receptor (FGFR) signaling is associated with many human conditions, including growth disorders, degenerative diseases, and cancer. Current FGFR therapeutics are based on chemical inhibitors of FGFR tyrosine kinase activity (TKIs). However, FGFR TKIs are limited in their target specificity as they generally inhibit all FGFRs and other receptor tyrosine kinases. In the search for specific inhibitors of human FGFR1, we identified VZ23, a DNA aptamer that binds to FGFR1b and FGFR1c with a KD of 55 nM and 162 nM, respectively, but not to the other FGFR variants (FGFR2b, FGFR2c, FGFR3b, FGFR3c, FGFR4). In cells, VZ23 inhibited the activation of downstream FGFR1 signaling and FGFR1-mediated regulation of cellular senescence, proliferation, and extracellular matrix homeostasis. Consistent with the specificity toward FGFR1 observed in vitro, VZ23 did not inhibit FGFR2-4 signaling in cells. We show that the VZ23 inhibits FGFR1 signaling in the presence of cognate fibroblast growth factor (FGF) ligands and its inhibitory activity is linked to its capacity to form unusual G-quadruplex structure. Our data suggest that targeting FGFR1 with DNA aptamers could be an effective alternative to TKIs for treating impaired FGFR1 signaling in human craniosynostoses.
- Publication type
- Journal Article MeSH
The fibroblast growth factor receptor family members, FGFR1-4, are frequently overexpressed in various solid tumors, including breast cancer and sarcomas. This overexpression highlights the potential of the family of FGFRs as promising targets for cancer therapy. However, conventional FGFR kinase inhibitors often encounter challenges such as limited efficacy or drug resistance. In this study, we pursue an alternative strategy by designing a conjugate of the FGFR ligand FGF1 with the radioisotope 161Tb, for targeted therapy in FGFR-overexpressing cancer cells. FGF1 was engineered (eFGF1) to incorporate a single cysteine at the C terminus for site-specific labeling with a DOTA chelator. eFGF1-DOTA was mixed with the radioisotope 161Tb under mild conditions, resulting in a labeling efficiency above 90%. The nonradioactive ligands were characterized by mass spectrometry, while radioligands were characterized by thin-layer chromatography. The targeting function of the radioligands was assessed through confocal microscopy, flow cytometry, and Western blot analysis, focusing on binding to cancer cells and the activation of downstream signaling pathways related to FGFR. When compared to MCF-7 and RD cell lines with low FGFR expression, eFGF1-DOTA-Tb[161Tb] radioligands demonstrated significantly higher accumulation in FGFR-overexpressing cell lines (MCF-7 FGFR1 and RMS559), leading to enhanced cytotoxicity. Besides radionuclides, eFGF1 can also deliver doxorubicin (DOX) into cancer cells. Considering these characteristics, eFGF1-DOTA-Tb[161Tb] and eFGF1-DOX emerge as promising candidates for FGFR-targeted cancer therapy, and further evaluation in vivo is warranted.
- Publication type
- Journal Article MeSH
Achondroplasia is the most common form of human dwarfism caused by mutations in the FGFR3 receptor tyrosine kinase. Current therapy begins at 2 years of age and improves longitudinal growth but does not address the cranial malformations including midface hypoplasia and foramen magnum stenosis, which lead to significant otolaryngeal and neurologic compromise. A recent clinical trial found partial restoration of cranial defects with therapy starting at 3 months of age, but results are still inconclusive. The benefits of achondroplasia therapy are therefore controversial, increasing skepticism among the medical community and patients. We used a mouse model of achondroplasia to test treatment protocols aligned with human studies. Early postnatal treatment (from day 1) was compared with late postnatal treatment (from day 4, equivalent to ~5 months in humans). Animals were treated with the FGFR3 inhibitor infigratinib and the effect on skeleton was thoroughly examined. We show that premature fusion of the skull base synchondroses occurs immediately after birth and leads to defective cranial development and foramen magnum stenosis in the mouse model to achondroplasia. This phenotype appears significantly restored by early infigratinib administration when compared with late treatment, which provides weak to no rescue. In contrast, the long bone growth is similarly improved by both early and late protocols. We provide clear evidence that immediate postnatal therapy is critical for normalization of skeletal growth in both the cranial base and long bones and the prevention of sequelae associated with achondroplasia. We also describe the limitations of early postnatal therapy, providing a paradigm-shifting argument for the development of prenatal therapy for achondroplasia.
- MeSH
- Achondroplasia * pathology drug therapy MeSH
- Skull pathology drug effects MeSH
- Humans MeSH
- Disease Models, Animal * MeSH
- Mice MeSH
- Receptor, Fibroblast Growth Factor, Type 3 * genetics metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Gastric cancer is a heterogeneous disease, both in terms of the frequency of occurrence in individual regions and the frequency of specific molecular alterations that are potentially targetable. In addition to the standard accepted, classical predictive and prognostic biomarkers (Her2, MMR or MSI, PD-L1 CPS) that need to be known prior to therapy, new ones are emerging that have the potential to significantly impact our treatment algorithms and ultimately patient prognosis. The aim of this article is to provide an overview of new potential therapeutic targets (CLDN 18.2, FGFR2b) in the treatment of this disease that, based on the positive results of recent studies, may be introduced into routine clinical practice in the near future.
- Keywords
- zolbetuximab,
- MeSH
- Immunotherapy methods MeSH
- Claudins MeSH
- Clinical Studies as Topic MeSH
- Clinical Trials, Phase II as Topic MeSH
- Drug Therapy, Combination methods MeSH
- Humans MeSH
- Neoplasm Metastasis MeSH
- Antibodies, Monoclonal administration & dosage MeSH
- Stomach Neoplasms * drug therapy therapy MeSH
- Antineoplastic Agents * administration & dosage MeSH
- Randomized Controlled Trials as Topic MeSH
- Receptor, Fibroblast Growth Factor, Type 2 antagonists & inhibitors MeSH
- Check Tag
- Humans MeSH
Primary biliary cholangitis (PBC) is a chronic autoimmune cholestatic disease characterized by the destruction of the small intrahepatic bile ducts, which can progress to liver cirrhosis. The gold standard in the treatment of PBC is ursodeoxycholic acid (UDCA), which is indicated in all patients with PBC because it improves not only biochemical parameters but also patients' survival. An important milestone in the identification of patients at risk is the assessment of biochemical response to UDCA. Patients who respond to treatment have a lower incidence of hepatic events and better prognosis than patients who do not. Several scoring systems can be used to assess the response and identify non-responders who will benefit from second-line treatment. Obeticholic acid (OCA) is currently the only approved second-line treatment for PBC, which is effective for non-responders to UDCA therapy or patients, who have not tolerated UDCA therapy. However, OCA is contraindicated in advanced liver cirrhosis and portal hypertension. Moreover, pruritus may be a limiting factor for the administration of OCA. Fibrates have shown promising data supporting their use in non-responders to UDCA because they improve the biochemical parameters and elastographic findings and have possible antipruritic effects. Therefore, the idea of a triple treatment seems interesting. Clinical research is focusing on several other groups of drugs: peroxisome proliferator-activated receptor (PPAR) δ- and α/δ agonists, non-steroidal farnesoid X receptor agonists, fibroblast growth factor 19 modulators, and inhibitors of nicotinamide adenine dinucleotide phosphate oxidase 1 and 4.
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: Antipsychotics are indispensable in the treatment of severe mental illneses, however adverse metabolic effects including diabetes, weight gain, dyslipidemia, and related cardiovascular morbidity are common, and current pharmacological strategies for their management are unsatisfactory. Glucagon-like 1 peptide receptor agonists (GLP-1 RAs) are approved for the treatment of type 2 diabetes and obesity hold promise for the management of antipsychotic-associated adverse metabolic effects. METHODS: To characterize the molecular effects and identify biomarkers for GLP-1 RA preventive treatment, Sprague-Dawley female rats were treated with long-acting formulations of the antipsychotic olanzapine and the GLP-1 RA dulaglutide for 8 days. A pair-feeding protocol evaluated the combined effects of dulaglutide and food restriction on an olanzapine-induced metabolic phenotype. Body weight and food consumption were recorded. Biochemical analysis included a lipid profile, a spectrum of gastrointestinal and adipose tissue-derived hormones, and fibroblast growth factor 21 serum levels. RESULTS: Olanzapine induced hyperphagia, weight gain, increased serum triglycerides and HDL cholesterol. Food restriction affected the OLA-induced phenotype but not serum markers. Dulaglutide led to a modest decrease in food intake, with no effect on weight gain, and did not reverse the OLA-induced changes in serum lipid parameters. Concomitant dulaglutide and food restriction resulted in weight loss, decreased feed efficiency, and lower total and HDL cholesterol. CONCLUSIONS: A combined strategy of dulaglutide and food restriction manifested a massive synergistic benefit. GLP-1RAs represent a promising strategy and deserve thorough future research. Our findings underline the potential importance of lifestyle intervention in addition to GLP-1 RA treatment.
- MeSH
- Antipsychotic Agents pharmacology adverse effects MeSH
- Benzodiazepines pharmacology adverse effects MeSH
- Glucagon-Like Peptides * analogs & derivatives pharmacology MeSH
- Weight Gain drug effects MeSH
- Immunoglobulin Fc Fragments * pharmacology MeSH
- Caloric Restriction methods MeSH
- Rats MeSH
- Disease Models, Animal MeSH
- Olanzapine * pharmacology adverse effects MeSH
- Rats, Sprague-Dawley * MeSH
- Eating drug effects MeSH
- Glucagon-Like Peptide-1 Receptor agonists metabolism MeSH
- Recombinant Fusion Proteins * pharmacology MeSH
- Body Weight drug effects MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
Hyaluronan, a linear glycosaminoglycan comprising D-N-acetylglucosamine and D-glucuronic acid, is the main component of the extracellular matrix. Its influence on cell proliferation, migration, inflammation, signalling, and other functions, depends heavily on its molecular weight and chemical modification. Unsaturated HA oligosaccharides are available in defined length and purity. Their potential therapeutic utility can be further improved by chemical modification, e. g., reduction. No synthesis of such modified oligosaccharides, either stepwise or by hyaluronan cleavage, has been reported yet. Here we show a three-step synthesis (esterification, depolymerization and reduction) of unsaturated even numbered hyaluronan oligosaccharides with carboxylates and the reducing terminus reduced to an alcohol. Particular oligosaccharides were synthesised. The modified oligosaccharides are not cleaved by mammalian or bacterial hyaluronidase and do not affect the growth of mouse and human fibroblasts. Further, MTT and NRU viability tests showed that they inhibit the growth of human colon carcinoma cells HT-29 by 20-50 % in concentrations 500-1000 μg/mL. Interestingly, this effect takes place regardless of CD44 receptor expression and was not observed with unmodified HA oligosaccharides. These compounds could serve as enzymatically stable building blocks for biologically active substances.
- MeSH
- Hyaluronan Receptors metabolism MeSH
- HT29 Cells MeSH
- Cytostatic Agents * pharmacology chemistry chemical synthesis MeSH
- Fibroblasts drug effects MeSH
- Hyaluronoglucosaminidase * metabolism antagonists & inhibitors MeSH
- Hyaluronic Acid * chemistry pharmacology MeSH
- Humans MeSH
- Mice MeSH
- Oligosaccharides * chemistry pharmacology MeSH
- Cell Proliferation * drug effects MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
OBJECTIVE: The aim of this study was to: (1) evaluate the anti-inflammatory effects of cannabidiol (CBD) on primary cultures of human gingival fibroblasts (HGFs) and (2) to clinically monitor the effect of CBD in subjects with periodontitis. BACKGROUND: The use of phytocannabinoids is a new approach in the treatment of widely prevalent periodontal disease. MATERIALS AND METHODS: Cannabinoid receptors were analyzed by western blot and interleukin production detected using enzyme immunoassay. Activation of the Nrf2 pathway was studied via monitoring the mRNA level of heme oxygenase-1. Antimicrobial effects were determined by standard microdilution and 16S rRNA screening. In the clinical part, a placebo-control double-blind randomized study was conducted (56 days) in three groups (n = 90) using dental gel without CBD (group A) and with 1% (w/w) CBD (group B) and corresponding toothpaste (group A - no CBD, group B - with CBD) for home use to maintain oral health. Group C used dental gel containing 1% chlorhexidine digluconate (active comparator) and toothpaste without CBD. RESULTS: Human gingival fibroblasts were confirmed to express the cannabinoid receptor CB2. Lipopolysaccharide-induced cells exhibited increased production of pro-inflammatory IL-6 and IL-8, with deceasing levels upon exposure to CBD. CBD also exhibited antimicrobial activities against Porphyromonas gingivalis, with an MIC of 1.5 μg/mL. Activation of the Nrf2 pathway was also demonstrated. In the clinical part, statistically significant improvement was found for the gingival, gingival bleeding, and modified gingival indices between placebo group A and CBD group B after 56 days. CONCLUSIONS: Cannabidiol reduced inflammation and the growth of selected periodontal pathogenic bacteria. The clinical trial demonstrated a statistically significant improvement after CBD application. No adverse effects of CBD were reported by patients or observed upon clinical examination during the study. The results are a promising basis for a more comprehensive investigation of the application of non-psychotropic cannabinoids in dentistry.
- MeSH
- Anti-Inflammatory Agents therapeutic use pharmacology MeSH
- Chlorhexidine therapeutic use pharmacology analogs & derivatives MeSH
- Adult MeSH
- Double-Blind Method MeSH
- NF-E2-Related Factor 2 MeSH
- Fibroblasts * drug effects MeSH
- Gingiva * drug effects MeSH
- Gingivitis * drug therapy MeSH
- Heme Oxygenase-1 MeSH
- Interleukin-6 analysis MeSH
- Interleukin-8 drug effects MeSH
- Cannabidiol * pharmacology therapeutic use MeSH
- Cells, Cultured MeSH
- Middle Aged MeSH
- Humans MeSH
- Periodontitis drug therapy MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH
PURPOSE: Cxbladder tests are urinary biomarker tests for detection of urothelial carcinoma. We developed enhanced Cxbladder tests that incorporate DNA analysis of 6 single nucleotide polymorphisms for the FGFR3 and TERT genes, in addition to the current 5 mRNA biomarkers and clinical risk factors. MATERIALS AND METHODS: Two multicenter, prospective studies were undertaken in: (1) U.S. patients with gross hematuria aged ≥18 years and (2) Singaporean patients with gross hematuria or microhematuria aged >21 years. All patients provided a midstream urine sample and underwent cystoscopy. Samples were retrospectively analyzed using enhanced Cxbladder-Triage (risk stratifies patients), enhanced Cxbladder-Detect (risk stratifies patients and detects positive patients), and the combination enhanced Cxbladder-Triage × Cxbladder-Detect. RESULTS: In the pooled cohort (N=804; gross hematuria: n=484, microhematuria: n=320), enhanced Cxbladder-Detect had a sensitivity of 97% (95% CI 89%-100%), specificity of 90% (95% CI 88%-92%), and negative predictive value of 99.7% (95% CI 99%-100%) for detection of urothelial carcinoma. Overall, 83% of patients were enhanced Cxbladder-Detect-negative (ie, needed no further work-up). Of 133 enhanced Cxbladder-Detect-positive patients, 59 had a confirmed tumor, of which 19 were low-grade noninvasive papillary carcinoma or papillary urothelial neoplasm of low malignant potential. In total, 40 tumors were high-grade Ta, T1-T4, Tis, including concomitant carcinoma in situ. Of the 74 patients with normal cystoscopy, 41 were positive by single nucleotide polymorphism analysis. Enhanced Cxbladder-Triage and enhanced Cxbladder-Detect had significantly better specificity than the first-generation Cxbladder tests (P < .001). CONCLUSIONS: This study in ethnically diverse patients with hematuria showed the analytical validity of the enhanced Cxbladder tests.
- MeSH
- Cystoscopy MeSH
- Adult MeSH
- Hematuria etiology genetics MeSH
- Risk Assessment MeSH
- Carcinoma in Situ * MeSH
- Carcinoma, Transitional Cell * diagnosis genetics urine MeSH
- Humans MeSH
- Adolescent MeSH
- Mutation MeSH
- Biomarkers, Tumor genetics urine MeSH
- Urinary Bladder Neoplasms * diagnosis genetics urine MeSH
- Prospective Studies MeSH
- Receptor, Fibroblast Growth Factor, Type 3 genetics MeSH
- Retrospective Studies MeSH
- Sensitivity and Specificity MeSH
- Telomerase * genetics MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Adolescent MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
INTRODUCTION: Hepatocellular carcinoma (HCC) patients at advanced stages receive immunotherapy or treatment with tyrosine kinase inhibitors (TKIs) such as Sorafenib (Sora) or Lenvatinib in frontline as well as Regorafenib (Rego) or Cabozantinib in second-line. A major hindrance of TKI therapies is the development of resistance, which renders drug treatment futile and results in HCC progression. METHODS: In this study, we addressed the impact of the receptor tyrosine kinase Axl binding to its ligand Gas6 in acquiring refractoriness to TKIs. The initial responses of Axl-positive and Axl-negative cell lines to different TKIs were assessed. Upon inducing resistance, RNA-Seq, gain- and loss-of-function studies were applied to understand and intervene with the molecular basis of refractoriness. Secretome analysis was performed to identify potential biomarkers of resistance. RESULTS: We show that HCC cells exhibiting a mesenchymal-like phenotype were less sensitive to drug treatment, linking TKI resistance to changes in epithelial plasticity. Gas6/Axl expression and activation were upregulated in Rego-resistant HCC cells together with the induction of ErbB receptors, whereas HCC cells lacking Axl failed to stimulate ErbBs. Treatment of Rego-insensitive HCC cells with the pan-ErbB family inhibitor Afatinib rather than with Erlotinib blocking ErbB1 reduced cell viability and clonogenicity. Genetic intervention with ErbB2-4 but not ErbB1 confirmed their crucial involvement in refractoriness to Rego. Furthermore, Rego-resistant HCC cells secreted basic fibroblast growth factor (bFGF) depending on Axl expression. HCC patients treated with Sora in first-line and with Rego in second-line displayed elevated serum levels of bFGF, emphasizing bFGF as a predictive biomarker of TKI treatment. DISCUSSION: Together, these data suggest that the inhibition of ErbBs is synthetic lethal with Rego in Axl-expressing HCC cells, showing a novel vulnerability of HCC.
- Publication type
- Journal Article MeSH