- Publication type
- Meeting Abstract MeSH
While there is good evidence for altered resting-state networks, particularly the default mode network (DMN), in both Alzheimer's disease (AD) and amnestic mild cognitive impairment preceding AD, there are rather conflicting data on changes in the DMN in Parkinson's disease (PD) and PD with cognitive impairment. This paper will focus on DMN study results, particularly in PD, as assessed by functional MRI.
- MeSH
- Alzheimer Disease physiopathology MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Brain physiopathology MeSH
- Neural Pathways physiology MeSH
- Rest physiology MeSH
- Parkinson Disease physiopathology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
Functional connectivity (FC) analysis is a prominent approach to analyzing fMRI data, especially acquired under the resting state condition. The commonly used linear correlation FC measure bears an implicit assumption of Gaussianity of the dependence structure. If only the marginals, but not all the bivariate distributions are Gaussian, linear correlation consistently underestimates the strength of the dependence. To assess the suitability of linear correlation and the general potential of nonlinear FC measures, we present a framework for testing and estimating the deviation from Gaussianity by means of comparing mutual information in the data and its Gaussianized counterpart. We apply this method to 24 sessions of human resting state fMRI. For each session, matrix of connectivities between 90 anatomical parcel time series is computed using mutual information and compared to results from its multivariate Gaussian surrogate that conserves the correlations but cancels any nonlinearity. While the group-level tests confirmed non-Gaussianity in the FC, the quantitative assessment revealed that the portion of mutual information neglected by linear correlation is relatively minor-on average only about 5% of the mutual information already captured by the linear correlation. The marginality of the non-Gaussianity was confirmed in comparisons using clustering of the parcels-the disagreement between clustering obtained from mutual information and linear correlation was attributable to random error. We conclude that for this type of data, practical relevance of nonlinear methods trying to improve over linear correlation might be limited by the fact that the data are indeed almost Gaussian.
- MeSH
- Algorithms MeSH
- Adult MeSH
- Fourier Analysis MeSH
- Oxygen blood MeSH
- Humans MeSH
- Linear Models MeSH
- Magnetic Resonance Imaging MeSH
- Young Adult MeSH
- Neural Pathways physiology MeSH
- Normal Distribution MeSH
- Rest physiology MeSH
- Cluster Analysis MeSH
- Software MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Publication type
- Meeting Abstract MeSH
Patients with schizophrenia (SCH) often demonstrate impairment in social-cognitive functions as well as disturbances in large-scale network connectivity. The ventromedial prefrontal cortex (vmPFC) is a core region of the default mode network, with projections to limbic structures. It plays an important role in social and emotional decision-making. We investigated whether resting-state functional connectivity (FC) relates to the cognitive and affective domains of theory of mind (ToM). Twenty-three SCH patients and 19 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging scanning. vmPFC seed connectivity was correlated with behavioral measures assessing ToM domains. SCH performed less well than HCs in both ToM task domains. An analysis of the resting-state FC revealed that SCH had reduced connectivity from the vmPFC to the subcallosal cortex, right amygdala, and right hippocampus as a function of behavioral scores in both ToM domains. Within-group analyses indicated that in HCs, the performance in ToM was positively associated with frontoamygdalar resting-state connectivity, whereas in SCH, the performance in ToM was negatively associated with the frontosubcallosal connectivity. Differences in the pattern of the resting-state frontolimbic connectivity and its associations with performance in ToM tasks between the two study groups might represent a different setup for processing social information in patients with SCH.
- MeSH
- Frontal Lobe diagnostic imaging MeSH
- Adult MeSH
- Emotions MeSH
- Cognition Disorders etiology MeSH
- Oxygen blood MeSH
- Humans MeSH
- Limbic System diagnostic imaging MeSH
- Magnetic Resonance Imaging MeSH
- Brain Mapping * MeSH
- Neural Pathways diagnostic imaging physiopathology MeSH
- Neuropsychological Tests MeSH
- Rest MeSH
- Image Processing, Computer-Assisted MeSH
- Recognition, Psychology MeSH
- Schizophrenia complications diagnostic imaging MeSH
- Social Behavior MeSH
- Theory of Mind physiology MeSH
- Self Report MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Interictal very high-frequency oscillations (VHFOs, 500-2000 Hz) in a resting awake state seem to be, according to a precedent study of our team, a more specific predictor of a good outcome of the epilepsy surgery compared to traditional interictal high-frequency oscillations (HFOs, 80-500 Hz). In this study, we retested this hypothesis on a larger cohort of patients. In addition, we also collected patients' sleep data and hypothesized that the occurrence of VHFOs in sleep will be greater than in resting state. We recorded interictal invasive electroencephalographic (iEEG) oscillations in 104 patients with drug-resistant epilepsy in a resting state and in 35 patients during sleep. 21 patients in the rest study and 11 patients in the sleep study met the inclusion criteria (interictal HFOs and VHFOs present in iEEG recordings, a surgical intervention and a postoperative follow-up of at least 1 year) for further evaluation of iEEG data. In the rest study, patients with good postoperative outcomes had significantly higher ratio of resected contacts with VHFOs compared to HFOs. In sleep, VHFOs were more abundant than in rest and the percentage of resected contacts in patients with good and poor outcomes did not considerably differ in any type of oscillations. In conclusion, (1) our results confirm, in a larger patient cohort, our previous work about VHFOs being a specific predictor of the area which needs to be resected; and (2) that more frequent sleep VHFOs do not further improve the results.
- MeSH
- Wakefulness MeSH
- Electroencephalography methods MeSH
- Epilepsy * MeSH
- Humans MeSH
- Drug Resistant Epilepsy * surgery MeSH
- Sleep MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Background: The few previous studies on resting-state electroencephalography (EEG) microstates in depressive patients suggest altered temporal characteristics of microstates compared to those of healthy subjects. We tested whether resting-state microstate temporal characteristics could capture large-scale brain network dynamic activity relevant to depressive symptomatology. Methods: To evaluate a possible relationship between the resting-state large-scale brain network dynamics and depressive symptoms, we performed EEG microstate analysis in 19 patients with moderate to severe depression in bipolar affective disorder, depressive episode, and recurrent depressive disorder and in 19 healthy controls. Results: Microstate analysis revealed six classes of microstates (A-F) in global clustering across all subjects. There were no between-group differences in the temporal characteristics of microstates. In the patient group, higher depressive symptomatology on the Montgomery-Åsberg Depression Rating Scale correlated with higher occurrence of microstate A (Spearman's rank correlation, r = 0.70, p < 0.01). Conclusion: Our results suggest that the observed interindividual differences in resting-state EEG microstate parameters could reflect altered large-scale brain network dynamics relevant to depressive symptomatology during depressive episodes. Replication in larger cohort is needed to assess the utility of the microstate analysis approach in an objective depression assessment at the individual level.
- Publication type
- Journal Article MeSH
In cervical dystonia, functional MRI (fMRI) evidence indicates changes in several resting state networks, which revert in part following the botulinum neurotoxin A (BoNT) therapy. Recently, the involvement of the cerebellum in dystonia has gained attention. The aim of our study was to compare connectivity between cerebellar subdivisions and the rest of the brain before and after BoNT treatment. Seventeen patients with cervical dystonia indicated for treatment with BoNT were enrolled (14 female, aged 50.2 ± 8.5 years, range 38-63 years). Clinical and fMRI examinations were carried out before and 4 weeks after BoNT injection. Clinical severity was evaluated using TWSTRS. Functional MRI data were acquired on a 1.5 T scanner during 8 min rest. Seed-based functional connectivity analysis was performed using data extracted from atlas-defined cerebellar areas in both datasets. Clinical scores demonstrated satisfactory BoNT effect. After treatment, connectivity decreased between the vermis lobule VIIIa and the left dorsal mesial frontal cortex. Positive correlations between the connectivity differences and the clinical improvement were detected for the right lobule VI, right crus II, vermis VIIIb and the right lobule IX. Our data provide evidence for modulation of cerebello-cortical connectivity resulting from successful treatment by botulinum neurotoxin.
- MeSH
- Botulinum Toxins, Type A administration & dosage MeSH
- Adult MeSH
- Injections, Intralesional MeSH
- Cognition physiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Cerebellum physiopathology MeSH
- Cerebral Cortex physiopathology MeSH
- Rest physiology MeSH
- Severity of Illness Index MeSH
- Torticollis diagnostic imaging drug therapy physiopathology psychology MeSH
- Treatment Outcome MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: Migraine is one of the most severe primary headache disorders. The nature of the headache and the associated symptoms during the attack suggest underlying functional alterations in the brain. In this study, we examined amplitude, the resting state fMRI fluctuation in migraineurs with and without aura (MWA, MWoA respectively) and healthy controls. METHODS: Resting state functional MRI images and T1 high-resolution images were acquired from all participants. For data analysis we compared the groups (MWA-Control, MWA-MWoA, MWoA-Control). The resting state networks were identified by MELODIC. The mean time courses of the networks were identified for each participant for all networks. The time-courses were decomposed into five frequency bands by discrete wavelet decomposition. The amplitude of the frequency-specific activity was compared between groups. Furthermore, the preprocessed resting state images were decomposed by wavelet analysis into five specific frequency bands voxel-wise. The voxel-wise amplitudes were compared between groups by non-parametric permutation test. RESULTS: In the MWA-Control comparison the discrete wavelet decomposition found alterations in the lateral visual network. Higher activity was measured in the MWA group in the highest frequency band (0.16-0.08 Hz). In case of the MWA-MWoA comparison all networks showed higher activity in the 0.08-0.04 Hz frequency range in MWA, and the lateral visual network in in higher frequencies. In MWoA-Control comparison only the default mode network revealed decreased activity in MWoA group in the 0.08-0.04 Hz band. The voxel-wise frequency specific analysis of the amplitudes found higher amplitudes in MWA as compared to MWoA in the in fronto-parietal regions, anterior cingulate cortex and cerebellum. DISCUSSION: The amplitude of the resting state fMRI activity fluctuation is higher in MWA than in MWoA. These results are in concordance with former studies, which found cortical hyperexcitability in MWA.
- MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Magnetic Resonance Imaging MeSH
- Migraine without Aura diagnostic imaging physiopathology MeSH
- Migraine with Aura diagnostic imaging physiopathology MeSH
- Brain diagnostic imaging physiopathology MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Comparative Study MeSH
Introduction: Brain structure and function were reported to be altered in migraine. Importantly our earlier results showed that white matter diffusion abnormalities and resting state functional activity were affected differently in the two subtypes of the disease, migraine with and without aura. Resting fluctuation of the BOLD signal in the white matter was reported recently. The question arising whether the white matter activity, that is strongly coupled with gray matter activity is also perturbed differentially in the two subtypes of the disease and if so, is it related to the microstructural alterations of the white matter. Methods: Resting state fMRI, 60 directional DTI images and high-resolution T1 images were obtained from 51 migraine patients and 32 healthy volunteers. The images were pre-processed and the white matter was extracted. Independent component analysis was performed to obtain white matter functional networks. The differential expression of the white matter functional networks in the two subtypes of the disease was investigated with dual-regression approach. The Fourier spectrum of the resting fMRI fluctuations were compared between groups. Voxel-wise correlation was calculated between the resting state functional activity fluctuations and white matter microstructural measures. Results: Three white matter networks were identified that were expressed differently in migraine with and without aura. Migraineurs with aura showed increased functional connectivity and amplitude of BOLD fluctuation. Fractional anisotropy and radial diffusivity showed strong correlation with the expression of the frontal white matter network in patients with aura. Discussion: Our study is the first to describe changes in white matter resting state functional activity in migraine with aura, showing correlation with the underlying microstructure. Functional and structural differences between disease subtypes suggest at least partially different pathomechanism, which may necessitate handling of these subtypes as separate entities in further studies.
- Publication type
- Journal Article MeSH