UNLABELLED: The aim of this study was to identify parameters influencing DNA extraction and PCR amplification efficiencies in an attempt to standardize Mucorales qPCR. The Fungal PCR Initiative Mucorales Laboratory Working Group distributed two panels of simulated samples to 26 laboratories: Panel A (six sera spiked with Mucorales DNA and one negative control serum) and Panel B (six Mucorales DNA extracts). Panel A underwent DNA extraction in each laboratory according to the local procedure and were sent to a central laboratory for testing using three different qPCR techniques: one in-house qPCR assay and two commercial assays (MucorGenius and Fungiplex). Panel B DNA extracts were PCR amplified in each laboratory using local procedures: nine in-house qPCR assays and two commercial kits (MucorGenius and MycoGENIE). All data were compiled and anonymously analyzed at the central laboratory. For Panel A, a total of six different automated platforms and five manual extraction methods were used. Positive rates were 64%, 70%, and 89%, for the MucorGenius, Fungiplex, and the in-house qPCR assay, respectively. Using a large volume of serum for DNA extraction provided the highest analytical sensitivity (82.5% for 1 mL compared with 62.7% for smaller volumes, P < 0.01). For Panel B, five in-house qPCR assays and two commercial kits had >78% positivity. Using larger PCR input volumes (≥7 μL) was associated with the highest sensitivity at 95.5% compared to 58.3% when lower input volumes were used (P < 0.01). Using larger sample volumes for nucleic acid extraction and DNA template volumes for PCR amplification significantly improves the performance of Mucorales qPCR when testing serum. IMPORTANCE: Mucormycosis is a life-threatening mold infection affecting immunosuppressed patients but also other patients with diabetes or trauma. Better survival is linked to shorter delays in diagnosis and treatment initiation. Detection of Mucorales-free DNA in serum or plasma using quantitative PCR allows a prompt diagnosis and earlier treatment. Several techniques and protocols of quantitative Mucorales PCR are used in Europe, and improving performance remains a common objective of laboratories participating in the fungal PCR Initiative Working Group. This study, which combined results from 26 laboratories in Europe, showed that the main parameters underpinning sensitivity are the preanalytical variables (volume of serum used for DNA extraction and DNA template volume), irrespective of the extraction platforms and qPCR assay/platform.
- MeSH
- Molecular Diagnostic Techniques standards methods MeSH
- DNA, Fungal * blood genetics MeSH
- Real-Time Polymerase Chain Reaction * standards methods MeSH
- Humans MeSH
- Mucorales * genetics isolation & purification MeSH
- Mucormycosis * diagnosis microbiology blood MeSH
- Sensitivity and Specificity * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
AIMS: Ossifying fibromyxoid tumour is a rare mesenchymal neoplasm predominantly affecting adults characterised by a multinodular growth pattern and the presence of a fibrous pseudocapsule with areas of ossification. Prompted by the recognition of a non-ossifying ossifying fibromyxoid tumour with lipomatous differentiation which caused diagnostic difficulty, we sought to further explore cases of ossifying fibromyxoid tumour with non-osseous heterologous elements. METHODS AND RESULTS: A search of our institutional and consultation archives revealed three additional cases that demonstrated lipomatous components and two cases with cartilaginous differentiation. RNA-sequencing revealed fusions involving PHF1 (n = 4) or EPC1 (n = 1) in all (five of five) cases tested, including EPC1::PHC1 and JAZF1::PHF1 fusions, which have not been reported before in ossifying fibromyxoid tumour. CONCLUSION: These six cases expand the histomorphological spectrum of ossifying fibromyxoid tumour, introducing lipomatous differentiation as a hitherto undocumented feature. Awareness of these rare variants will ensure appropriate diagnosis and clinical management.
- MeSH
- Cell Differentiation MeSH
- Cartilage pathology MeSH
- Diagnosis, Differential MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Lipoma * pathology diagnosis genetics MeSH
- Soft Tissue Neoplasms * pathology diagnosis genetics MeSH
- Fibroma, Ossifying * pathology diagnosis genetics MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
BACKGROUND: Daratumumab, an anti-CD38 monoclonal antibody, has been approved for the treatment of multiple myeloma. Data are needed regarding the use of daratumumab for high-risk smoldering multiple myeloma, a precursor disease of active multiple myeloma for which no treatments have been approved. METHODS: In this phase 3 trial, we randomly assigned patients with high-risk smoldering multiple myeloma to receive either subcutaneous daratumumab monotherapy or active monitoring. Treatment was continued for 39 cycles, for 36 months, or until confirmation of disease progression, whichever occurred first. The primary end point was progression-free survival; progression to active multiple myeloma was assessed by an independent review committee in accordance with International Myeloma Working Group diagnostic criteria. RESULTS: Among the 390 enrolled patients, 194 were assigned to the daratumumab group and 196 to the active-monitoring group. With a median follow-up of 65.2 months, the risk of disease progression or death was 51% lower with daratumumab than with active monitoring (hazard ratio, 0.49; 95% confidence interval [CI], 0.36 to 0.67; P<0.001). Progression-free survival at 5 years was 63.1% with daratumumab and 40.8% with active monitoring. A total of 15 patients (7.7%) in the daratumumab group and 26 patients (13.3%) in the active-monitoring group died (hazard ratio, 0.52; 95% CI, 0.27 to 0.98). Overall survival at 5 years was 93.0% with daratumumab and 86.9% with active monitoring. The most common grade 3 or 4 adverse event was hypertension, which occurred in 5.7% and 4.6% of the patients in the daratumumab group and the active-monitoring group, respectively. Adverse events led to treatment discontinuation in 5.7% of the patients in the daratumumab group, and no new safety concerns were identified. CONCLUSIONS: Among patients with high-risk smoldering multiple myeloma, subcutaneous daratumumab monotherapy was associated with a significantly lower risk of progression to active multiple myeloma or death and with higher overall survival than active monitoring. No unexpected safety concerns were identified. (Funded by Janssen Research and Development; AQUILA ClinicalTrials.gov number, NCT03301220.).
- MeSH
- Progression-Free Survival MeSH
- Adult MeSH
- Smoldering Multiple Myeloma * diagnosis mortality therapy MeSH
- Injections, Subcutaneous MeSH
- Kaplan-Meier Estimate MeSH
- Middle Aged MeSH
- Humans MeSH
- Multiple Myeloma * diagnosis epidemiology prevention & control MeSH
- Antibodies, Monoclonal * administration & dosage adverse effects MeSH
- Watchful Waiting * statistics & numerical data MeSH
- Disease Progression MeSH
- Antineoplastic Agents * administration & dosage adverse effects MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial, Phase III MeSH
- Multicenter Study MeSH
- Randomized Controlled Trial MeSH
- Comparative Study MeSH
PURPOSE: We set out to develop a publicly available tool that could accurately diagnose spinal muscular atrophy (SMA) in exome, genome, or panel sequencing data sets aligned to a GRCh37, GRCh38, or T2T reference genome. METHODS: The SMA Finder algorithm detects the most common genetic causes of SMA by evaluating reads that overlap the c.840 position of the SMN1 and SMN2 paralogs. It uses these reads to determine whether an individual most likely has 0 functional copies of SMN1. RESULTS: We developed SMA Finder and evaluated it on 16,626 exomes and 3911 genomes from the Broad Institute Center for Mendelian Genomics, 1157 exomes and 8762 panel samples from Tartu University Hospital, and 198,868 exomes and 198,868 genomes from the UK Biobank. SMA Finder's false-positive rate was below 1 in 200,000 samples, its positive predictive value was greater than 96%, and its true-positive rate was 29 out of 29. Most of these SMA diagnoses had initially been clinically misdiagnosed as limb-girdle muscular dystrophy. CONCLUSION: Our extensive evaluation of SMA Finder on exome, genome, and panel sequencing samples found it to have nearly 100% accuracy and demonstrated its ability to reduce diagnostic delays, particularly in individuals with milder subtypes of SMA. Given this accuracy, the common misdiagnoses identified here, the widespread availability of clinical confirmatory testing for SMA, and the existence of treatment options, we propose that it is time to add SMN1 to the American College of Medical Genetics list of genes with reportable secondary findings after genome and exome sequencing.
- MeSH
- Algorithms MeSH
- Exome genetics MeSH
- Genome, Human genetics MeSH
- Genomics methods MeSH
- Humans MeSH
- Survival of Motor Neuron 1 Protein genetics MeSH
- Survival of Motor Neuron 2 Protein genetics MeSH
- Sequence Analysis, DNA methods MeSH
- Exome Sequencing MeSH
- Muscular Atrophy, Spinal * genetics diagnosis MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
TFE3 rearrangements characterize histogenetically, topographically, and biologically diverse neoplasms. Besides being a universal defining feature in alveolar soft part sarcoma (ASPS) and clear cell stromal tumor of the lung, TFE3 fusions have been reported in subsets of renal cell carcinoma, perivascular epithelioid cell tumor (PEComa), epithelioid hemangioendothelioma and ossifying fibromyxoid tumors. TFE3 -related neoplasms are rare in the head and neck and may pose diagnostic challenges. We herein describe 22 TFE3 fusion neoplasms affecting 11 males and 11 females aged 4 to 79 years (median, 25) and involving different head and neck sites: sinonasal cavities (n = 8), tongue (n = 4), oral cavity/oropharynx (n = 3), salivary glands (n = 2), orbit (n = 2), and soft tissue or unspecified sites (n = 3). Based on morphology and myomelanocytic immunophenotype, 10 tumors qualified as ASPS, 7 as PEComas (3 melanotic; all sinonasal), and 5 showed intermediate (indeterminate) histology overlapping with ASPS and PEComa. Immunohistochemistry for TFE3 was homogeneously strongly positive in all cases. Targeted RNA sequencing/FISH testing confirmed TFE3 fusions in 14 of 16 successfully tested cases (88%). ASPSCR1 was the most frequent fusion partner in ASPS (4 of 5 cases); one ASPS had a rare VCP::TFE3 fusion. The 6 successfully tested PEComas had known fusion partners as reported in renal cell carcinoma and PEComas ( NONO, PRCC, SFPQ , and PSPC1 ). The indeterminate tumors harbored ASPSCR1::TFE3 (n = 2) and U2AF2::TFE3 (n = 1) fusions, respectively. This large series devoted to TFE3-positive head and neck tumors illustrates the recently proposed morphologic overlap in the spectrum of TFE3 -associated mesenchymal neoplasms. While all PEComas were sinonasal, ASPS was never sinonasal and occurred in diverse head and neck sites with a predilection for the tongue. The indeterminate (PEComa-like) category is molecularly more akin to ASPS but shows different age, sex, and anatomic distribution compared with classic ASPS. We report VCP as a novel fusion partner in ASPS and PSPC1 as a novel TFE3 fusion partner in PEComa (detected in one PEComa). Future studies should shed light on the most appropriate terminological subtyping of these highly overlapping tumors.
- MeSH
- Sarcoma, Alveolar Soft Part * genetics pathology MeSH
- Child MeSH
- Adult MeSH
- Phenotype MeSH
- Genetic Predisposition to Disease MeSH
- Gene Rearrangement * MeSH
- In Situ Hybridization, Fluorescence MeSH
- Immunohistochemistry MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Biomarkers, Tumor * genetics analysis MeSH
- Head and Neck Neoplasms * genetics pathology chemistry MeSH
- Perivascular Epithelioid Cell Neoplasms * genetics pathology chemistry MeSH
- Child, Preschool MeSH
- Aged MeSH
- Basic Helix-Loop-Helix Leucine Zipper Transcription Factors * genetics MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Child, Preschool MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
The 2024 Kidney Disease: Improving Global Outcomes (KDIGO) guidelines for chronic kidney disease (CKD) evaluation and management bring important updates, particularly for European laboratories. These guidelines emphasize the need for harmonization in CKD testing, promoting the use of regional equations. In Europe, the European Kidney Function Consortium (EKFC) equation is particularly suited for European populations, particularly compared to the CKD-EPI 2021 race-free equation. A significant focus is placed on the combined use of creatinine and cystatin C to estimate glomerular filtration rate (eGFRcr-cys), improving diagnostic accuracy. In situations where eGFR may be inaccurate or clinically insufficient, the guidelines encourage the use of measured GFR (mGFR) through exogenous markers like iohexol. These guidelines emphasize the need to standardize creatinine and cystatin C measurements, ensure traceability to international reference materials, and adopt harmonized reporting practices. The recommendations also highlight the importance of incorporating risk prediction models, such as the Kidney Failure Risk Equation (KFRE), into routine clinical practice to better tailor patient care. This article provides a European perspective on how these KDIGO updates should be implemented in clinical laboratories to enhance CKD diagnosis and management, ensuring consistency across the continent.
- MeSH
- Renal Insufficiency, Chronic * diagnosis therapy MeSH
- Cystatin C blood MeSH
- Glomerular Filtration Rate * MeSH
- Laboratories, Clinical MeSH
- Creatinine blood MeSH
- Humans MeSH
- Practice Guidelines as Topic * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
- Geographicals
- Europe MeSH
OBJECTIVES: To prospectively validate the diagnostic performance of a non-invasive point-of-care tool (Rapid IAI System), including vaginal alpha-fetoprotein and interleukin-6, to predict the occurrence of intra-amniotic inflammation in a Spanish cohort of patients admitted with a diagnosis of preterm labor and intact membranes. METHODS: From 2017 to 2022, we prospectively evaluated a cohort of pregnant women diagnosed with preterm labor and intact membranes admitted below 34+0 weeks who underwent amniocentesis to rule-in/out intra-amniotic infection and/or inflammation. Vaginal sampling was performed at the time of amniocentesis or within 24-48 h. Amniotic fluid IL-6, vaginal alpha-fetoprotein and vaginal IL-6 concentrations were measured using a point-of-care tool provided by Hologic Inc., "Rapid IAI System". We defined intra-amniotic inflammation when amniotic fluid IL-6 values were greater than 11.3 ng/mL. During recruitment, clinicians were blinded to the results of the point-of-care tool. The original prediction model proposed by Hologic Inc. to predict intra-amniotic inflammation was validated in this cohort of patients. RESULTS: We included 151 patients diagnosed with preterm labor and intact membranes. Among these, 29 (19.2 %) had intra-amniotic inflammation. The algorithm including vaginal IL-6 and alpha-fetoprotein showed an area under curve to predict intra-amniotic inflammation of 80.3 % (±5.3 %) with a sensitivity of 72.4 %, specificity of 84.6 %, positive predictive valuve (PPV) of 52.5 %, negative predictive value (NPV) of 92.9 %, and a positive likelihood ratio (LR+) of 4.6 and negative likelihood ratio (LR-) of 0.33. CONCLUSIONS: External validation of a non-invasive rapid point-of-care tool, including vaginal alpha-fetoprotein and IL-6, showed very good diagnostic performance for predicting the absence of intra-amniotic inflammation in women with preterm labor and intact membranes.
- MeSH
- alpha-Fetoproteins * analysis metabolism MeSH
- Amniocentesis methods MeSH
- Chorioamnionitis * diagnosis MeSH
- Adult MeSH
- Risk Assessment methods MeSH
- Interleukin-6 * analysis blood metabolism MeSH
- Humans MeSH
- Amniotic Fluid * metabolism chemistry MeSH
- Point-of-Care Testing MeSH
- Obstetric Labor, Premature * diagnosis MeSH
- Predictive Value of Tests MeSH
- Prospective Studies MeSH
- Pregnancy MeSH
- Vagina metabolism MeSH
- Point-of-Care Systems MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Validation Study MeSH
PURPOSE: Genetic testing in consanguineous families advances the general comprehension of pathophysiological pathways. However, short stature (SS) genetics remain unexplored in a defined consanguineous cohort. This study examines a unique pediatric cohort from Sulaimani, Iraq, aiming to inspire a genetic testing algorithm for similar populations. METHODS: Among 280 SS referrals from 2018-2020, 64 children met inclusion criteria (from consanguineous families; height ≤ -2.25 SD), 51 provided informed consent (30 females; 31 syndromic SS) and underwent investigation, primarily via exome sequencing. Prioritized variants were evaluated by the American College of Medical Genetics and Genomics standards. A comparative analysis was conducted by juxtaposing our findings against published gene panels for SS. RESULTS: A genetic cause of SS was elucidated in 31 of 51 (61%) participants. Pathogenic variants were found in genes involved in the GH-IGF-1 axis (GHR and SOX3), thyroid axis (TSHR), growth plate (CTSK, COL1A2, COL10A1, DYM, FN1, LTBP3, MMP13, NPR2, and SHOX), signal transduction (PTPN11), DNA/RNA replication (DNAJC21, GZF1, and LIG4), cytoskeletal structure (CCDC8, FLNA, and PCNT), transmembrane transport (SLC34A3 and SLC7A7), enzyme coding (CYP27B1, GALNS, and GNPTG), and ciliogenesis (CFAP410). Two additional participants had Silver-Russell syndrome and 1 had del22q.11.21. Syndromic SS was predictive in identifying a monogenic condition. Using a gene panel would yield positive results in only 10% to 33% of cases. CONCLUSION: A tailored testing strategy is essential to increase diagnostic yield in children with SS from consanguineous populations.
- MeSH
- Algorithms MeSH
- Child MeSH
- Genetic Testing * methods MeSH
- Humans MeSH
- Adolescent MeSH
- Mutation genetics MeSH
- Dwarfism genetics diagnosis MeSH
- Consanguinity * MeSH
- Growth Disorders genetics diagnosis MeSH
- Child, Preschool MeSH
- Pedigree MeSH
- Exome Sequencing methods MeSH
- Body Height genetics MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Iraq MeSH
Precise localization of peripheral nerve injuries and evaluation of their prognosis based on clinical and electrodiagnostic examinations are particularly challenging in the acute phase. High-resolution ultrasound (HRUS) may offer a viable and cost-effective imaging option for assessing the morphology of nerve injuries. Consequently, a systematic review and meta-analysis of studies on the use of ultrasound for diagnosing traumatic nerve injuries were conducted. A total of 15 studies were included, reporting the most recent findings on using HRUS in the diagnosis of traumatic nerve injury. These studies assessed the diagnostic test accuracy of ultrasound for the detection of traumatic nerve injury in 272 participants, with the cross-sectional area at the site of traumatic nerve injury also reported in 1,249 participants. The pooled sensitivity and specificity of the included studies were 92% confidence interval (CI) (0.89-0.95) and 86% CI (0.82-0.89), respectively. The positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio were 13.76 CI (1.41-134.34), 0.08 CI (0.03-0.18), and 286.23 CI (21.22-3,860.40), respectively. In the summary of the receiver operating characteristic curve, the area under the curve was 0.986, and the Q* index was 0.949. Based on the current literature, HRUS has shown promising results in addition to its availability and feasibility. HRUS can serve as a valuable complement to clinical and electrodiagnostic examinations for diagnosing traumatic peripheral nerve injuries. Further research is recommended to better understand the ultrasound characteristics of these injuries.
- MeSH
- Humans MeSH
- Peripheral Nerve Injuries * diagnostic imaging diagnosis MeSH
- Ultrasonography * methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
- Review MeSH
- Systematic Review MeSH
Pseudohypoaldosteronism type 2 (PHA2) is a rare inherited condition of altered tubular salt handling. It is characterized by the specific constellation of hyperkalaemic hyporeninemic hypertension, hyperchloremic metabolic acidosis and hypercalciuria. Molecular genetic testing confirms the diagnosis in the majority of cases. Thiazides constitute effective treatment. Due to its rarity, the diagnosis is often delayed. We here present two children with PHA2, who were initially treated with fludrocortisone and bicarbonate complicated mainly by exacerbation of their hypertension. Discontinuation of their previous therapy and commencement of thiazide diuretics led to normalisation of their blood pressure and electrolyte and acid-base status.
- MeSH
- Acidosis * diagnosis etiology MeSH
- Child MeSH
- Fludrocortisone therapeutic use MeSH
- Hyperkalemia diagnosis etiology genetics blood MeSH
- Hypertension * diagnosis etiology drug therapy genetics MeSH
- Sodium Chloride Symporter Inhibitors therapeutic use MeSH
- Blood Pressure MeSH
- Humans MeSH
- Pseudohypoaldosteronism * genetics diagnosis physiopathology MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH