The aim was to explore factors associated with intestinal tissue levels of anti-TNF alpha (anti-TNF), anti-TNF antibodies, and cytokines in pediatric patients with Crohn Disease (CD). In a prospective exploratory study of CD patients undergoing ileocecal resection or colonoscopy between 6/2020 and 1/2023, we analysed tissue levels of anti-TNF, anti-TNF antibodies, and cytokines (TNF-α, IL-17, IL-1β, IFN-γ) from intestinal biopsies. Mixed-effects regression models, adjusted for potential confounders, were used. Data from 27 CD patients (18 females, 66.7%) were analysed. Fourteen (52%) received adalimumab (ADA) and thirteen received infliximab (IFX), with a median therapy duration of 17 (IQR 4.5-41.5) months. Higher levels of free anti-TNF were found in macroscopically inflamed tissue compared to non-inflamed tissue (β = 3.42, 95% CI 1.05-6.10). No significant association was found between serum and tissue anti-TNF levels (β= -0.06, 95% CI - 0.70-0.58). Patients treated longer with anti-TNF had increased IL-17 levels (β = 0.19, 95% CI 0.05-0.33), independent of disease duration and age. IFN-γ levels were linked with both follow-up duration and anti-TNF length. Our study shows significantly higher free drug levels in inflamed tissue. Long-term anti-TNF treatment has been linked to increased IL-17 levels, suggesting a possible impact on the cytokine response pathway. We did not observe a relationship between serum and tissue anti-TNF levels.
- MeSH
- Adalimumab * therapeutic use MeSH
- Crohn Disease * drug therapy metabolism blood pathology MeSH
- Cytokines * metabolism blood MeSH
- Child MeSH
- Infliximab * therapeutic use MeSH
- Humans MeSH
- Adolescent MeSH
- Prospective Studies MeSH
- Intestines pathology drug effects MeSH
- Intestinal Mucosa metabolism pathology MeSH
- Tumor Necrosis Factor-alpha * antagonists & inhibitors metabolism MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Highly sensitized (HS) patients in need of kidney transplantation (KTx) typically spend a longer time waiting for compatible kidneys, are unlikely to receive an organ offer, and are at increased risk of antibody-mediated rejection (AMR). Desensitization using imlifidase, which is more rapid and removes total body immunoglobulin G (IgG) to a greater extent than other methods, enables transplantation to occur between HLA-incompatible (HLAi) donor-recipient pairs and allows patients to have greater access to KTx. However, when the project was launched there was limited data and clinical experience with desensitization in general and with imlifidase specifically. Hence, this Delphi methodology was used to reach a consensus from a multi-disciplinary team (MDT) of experts from 15 countries on the management of HS patients undergoing imlifidase HLAi from a deceased donor (DD) KTx. This Delphi consensus provides clinical practice guidance on the use of imlifidase in the end-to-end management of HS patients undergoing an HLAi DD KTx and supports centers in the development of guidelines for the utilization and integration of imlifidase into clinical practice.
- MeSH
- Tissue Donors * MeSH
- Delphi Technique * MeSH
- Desensitization, Immunologic * methods MeSH
- HLA Antigens * immunology MeSH
- Immunoglobulin G MeSH
- Consensus * MeSH
- Humans MeSH
- Graft Rejection prevention & control immunology MeSH
- Kidney Transplantation * MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
PURPOSE: Patients with high-grade serous ovarian carcinoma (HGSOC) are virtually insensitive to immune checkpoint inhibitors (ICI) employed as standalone therapeutics, at least in part reflecting microenvironmental immunosuppression. Thus, conventional chemotherapeutics and targeted anticancer agents that not only mediate cytotoxic effects but also promote the recruitment of immune effector cells to the HGSOC microenvironment stand out as promising combinatorial partners for ICIs in this oncological indication. EXPERIMENTAL DESIGN: We harnessed a variety of transcriptomic, spatial, and functional assays to characterize the differential impact of neoadjuvant paclitaxel-carboplatin on the immunological configuration of paired primary and metastatic HGSOC biopsies as compared to neoadjuvant chemotherapy (NACT)-naïve HGSOC samples from five independent patient cohorts. RESULTS: We found NACT-driven endoplasmic reticulum stress and calreticulin exposure in metastatic HGSOC lesions culminates with the establishment of a dense immune infiltrate including follicular T cells (TFH cells), a prerequisite for mature tertiary lymphoid structure (TLS) formation. In this context, TLS maturation was associated with an increased intratumoral density of ICI-sensitive TCF1+PD1+ CD8+ T cells over their ICI-insensitive TIM-3+PD1+ counterparts. Consistent with this notion, chemotherapy coupled with a PD1-targeting ICI provided a significant survival benefit over either therapeutic approach in syngeneic models of HGSOC bearing high (but not low) tumor mutational burden. CONCLUSIONS: Altogether, our findings suggest that NACT promotes TLS formation and maturation in HGSOC lesions, de facto preserving an intratumoral ICI-sensitive T-cell phenotype. These observations emphasize the role of rational design, especially relative to the administration schedule, for clinical trials testing chemotherapy plus ICIs in patients with HGSOC. See related commentary by Bravo Melgar and Laoui, p. 10.
- MeSH
- CD8-Positive T-Lymphocytes * immunology drug effects MeSH
- Tertiary Lymphoid Structures * immunology pathology MeSH
- Hepatocyte Nuclear Factor 1-alpha * genetics metabolism MeSH
- Immune Checkpoint Inhibitors * therapeutic use pharmacology MeSH
- Carboplatin administration & dosage pharmacology therapeutic use MeSH
- Humans MeSH
- Tumor Microenvironment * immunology drug effects MeSH
- Ovarian Neoplasms * drug therapy immunology pathology MeSH
- Neoadjuvant Therapy methods MeSH
- Paclitaxel administration & dosage therapeutic use pharmacology MeSH
- Antineoplastic Combined Chemotherapy Protocols therapeutic use pharmacology MeSH
- Cystadenocarcinoma, Serous drug therapy pathology immunology MeSH
- Endoplasmic Reticulum Stress drug effects immunology MeSH
- Lymphocytes, Tumor-Infiltrating immunology drug effects metabolism MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
INTRODUCTION: Stem cells derived from adipose tissue are gaining popularity in the field of regenerative medicine due to their adaptability and clinical potential. Their rapid growth, ability to differentiate, and easy extraction with minimal complications make adipose-derived stem cells (ADSCs) a promising option for many treatments, particularly those targeting bone-related diseases. This study analyzed gene expression in canine ADSCs subjected to long-term culture and osteogenic differentiation. METHODS: ADSCs were isolated from discarded surgical waste and cultured for 14 days with and without differentiation media to assess osteogenic changes. RNA sequencing (RNA-seq) and bioinformatical analysis were performed to obtain comprehensive transcriptomic data. A total of 17793 genes were detected and GO enrichment analysis was performed on the differentially expressed genes to identify significantly up- and downregulated Biological Process (BP) GO terms across each comparison. RESULTS: The upregulation of apoptosis-regulating genes and genes related to circulatory system development suggest an induction of these processes, while the downregulation of neurogenesis and gliogenesis genes points to reciprocal regulation during osteogenic differentiation of canine ADSCs. DISCUSSION: These findings underscore the potential of ADSCs in bone regeneration and offer valuable insights for advancing tissue engineering, however further studies, including proteomic analyses, are needed to confirm these patterns and their biological significance.
- Publication type
- Journal Article MeSH
BACKGROUND: The longitudinal study was conducted over the initial 2 years of the COVID-19 pandemic, spanning from June 2020 to December 2022, in healthcare workers (HCWs) of the Thomayer University Hospital. A total of 3892 blood samples were collected and analyzed for total nucleocapsid (N) antibodies. The aim of the study was to evaluate the dynamics of N antibodies, their relationship to the PCR test, spike (S) antibodies, interferon-gamma, and prediction of reinfection with SARS-CoV-2. METHODS: Blood collections were performed in three rounds, along with questionnaires addressing clinical symptoms of past infection, PCR testing, and vaccination. Antibody measurements included total N antibodies (Roche Diagnostics) and postvaccination S antibodies (Euroimmun). Cellular immunity was tested by interferon-gamma release assay (Euroimmun). RESULTS: At the end of the study, 35.9% of HCWs were positive for N antibodies, and 39.5% of HCWs had either known PCR positivity or N antibodies or both. Ten percent of participants had no knowledge of a COVID-19 infection and 35% of positive individuals exhibited no symptoms. The values of positive antibodies decrease over a period of 6 months to 1 year, depending on the initial value, and their dynamics are highly variable. The study also demonstrated that the highest levels of spike antibodies and interferon-gamma occur during so-called hybrid immunity. CONCLUSION: Nucleocapsid antibodies proved valuable in monitoring SARS-CoV-2 infection dynamics, and they may detect cases of SARS-CoV-2 infection missed by PCR tests. The study identified distinct patterns in antibody dynamics and protection of hybrid immunity during reinfection.
- MeSH
- Biomarkers blood MeSH
- COVID-19 * immunology blood diagnosis epidemiology MeSH
- Adult MeSH
- Phosphoproteins MeSH
- Spike Glycoprotein, Coronavirus immunology MeSH
- Interferon-gamma blood MeSH
- Coronavirus Nucleocapsid Proteins immunology MeSH
- Middle Aged MeSH
- Humans MeSH
- Longitudinal Studies MeSH
- Hospitals, University MeSH
- Nucleocapsid immunology MeSH
- Antibodies, Viral * blood MeSH
- SARS-CoV-2 * immunology MeSH
- COVID-19 Serological Testing methods MeSH
- Health Personnel * statistics & numerical data MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: The cerebellum is one of the major central nervous structures consistently altered in obesity. Its role in higher cognitive function, parts of which are affected by obesity, is mediated through projections to and from the cerebral cortex. We therefore investigated the relationship between body mass index (BMI) and cerebellocerebral connectivity. METHODS: We utilized the Human Connectome Project's Young Adults dataset, including functional magnetic resonance imaging (fMRI) and behavioral data, to perform connectome-based predictive modeling (CPM) restricted to cerebellocerebral connectivity of resting-state fMRI and task-based fMRI. We developed a Python-based open-source framework to perform CPM, a data-driven technique with built-in cross-validation to establish brain-behavior relationships. Significance was assessed with permutation analysis. RESULTS: We found that (i) cerebellocerebral connectivity predicted BMI, (ii) task-general cerebellocerebral connectivity predicted BMI more reliably than resting-state fMRI and individual task-based fMRI separately, (iii) predictive networks derived this way overlapped with established functional brain networks (namely, frontoparietal networks, the somatomotor network, the salience network, and the default mode network), and (iv) we found there was an inverse overlap between networks predictive of BMI and networks predictive of cognitive measures adversely affected by overweight/obesity. CONCLUSIONS: Our results suggest obesity-specific alterations in cerebellocerebral connectivity, specifically with regard to task execution. With brain areas and brain networks relevant to task performance implicated, these alterations seem to reflect a neurobiological substrate for task performance adversely affected by obesity.
- MeSH
- Adult MeSH
- Body Mass Index * MeSH
- Connectome * methods MeSH
- Humans MeSH
- Magnetic Resonance Imaging * methods MeSH
- Young Adult MeSH
- Cerebellum * diagnostic imaging physiology MeSH
- Nerve Net diagnostic imaging physiology MeSH
- Obesity diagnostic imaging MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
Specialized or secondary metabolites are small molecules of biological origin, often showing potent biological activities with applications in agriculture, engineering and medicine. Usually, the biosynthesis of these natural products is governed by sets of co-regulated and physically clustered genes known as biosynthetic gene clusters (BGCs). To share information about BGCs in a standardized and machine-readable way, the Minimum Information about a Biosynthetic Gene cluster (MIBiG) data standard and repository was initiated in 2015. Since its conception, MIBiG has been regularly updated to expand data coverage and remain up to date with innovations in natural product research. Here, we describe MIBiG version 4.0, an extensive update to the data repository and the underlying data standard. In a massive community annotation effort, 267 contributors performed 8304 edits, creating 557 new entries and modifying 590 existing entries, resulting in a new total of 3059 curated entries in MIBiG. Particular attention was paid to ensuring high data quality, with automated data validation using a newly developed custom submission portal prototype, paired with a novel peer-reviewing model. MIBiG 4.0 also takes steps towards a rolling release model and a broader involvement of the scientific community. MIBiG 4.0 is accessible online at https://mibig.secondarymetabolites.org/.
Adenoid cystic carcinomas (AdCC) of salivary gland origin have long been categorized as fusion-defined carcinomas owing to the almost universal presence of the gene fusion MYB::NFIB , or less commonly MYBL1::NFIB. Sinonasal AdCC is an aggressive salivary gland malignancy with no effective systemic therapy. Therefore, it is urgent to search for potentially targetable genetic alterations associated with AdCC. We have searched the authors' registries and selected all AdCCs arising in the sinonasal tract. The tumors were examined histologically, immunohistochemically, by next generation sequencing (NGS) and/or fluorescence in situ hybridization (FISH) looking for MYB/MYBL1 and/or NFIB gene fusions or any novel gene fusions and/or mutations. In addition, all tumors were tested for HPV by genotyping using (q)PCR. Our cohort comprised 88 cases of sinonasal AdCC, predominantly characterized by canonical MYB::NFIB (49 cases) and MYBL1::NFIB (9 cases) fusions. In addition, noncanonical fusions EWSR1::MYB ; ACTB::MYB; ESRRG::DNM3 , and ACTN4::MYB were identified by NGS, each of them in 1 case. Among nine fusion-negative AdCCs, FISH detected rearrangements in MYB (7 cases) , NFIB (1 case), and EWSR1 (1 case). Six AdCCs lacked fusions or gene rearrangements, while 11 cases were unanalyzable. Mutational analysis was performed by NGS in 31/88 (35%) AdCCs. Mutations in genes with established roles in oncogenesis were identified in 21/31 tumors (68%), including BCOR (4/21; 19%), NOTCH1 (3/21; 14%), EP300 (3/21; 14%), SMARCA4 (2/21; 9%), RUNX1 (2/21; 9%), KDM6A (2/21; 9%), SPEN (2/21; 9%), and RIT1, MGA, RB1, PHF6, PTEN, CREBBP, DDX41, CHD2, ROS1, TAF1, CCD1, NF1, PALB2, AVCR1B, ARID1A, PPM1D, LZTR1, GEN1 , PDGFRA , each in 1 case (1/21; 5%). Additional 24 cases exhibited a spectrum of gene mutations of uncertain pathogenetic significance. No morphologic differences were observed between AdCCs with MYBL1::NFIB and MYB::NFIB fusions. Interestingly, mutations in the NOTCH genes were seen in connection with both canonical and noncanonical fusions, and often associated with high-grade histology or metatypical phenotype, as well as with poorer clinical outcome. Noncanonical fusions were predominantly observed in metatypical AdCCs. These findings emphasize the value of comprehensive molecular profiling in correlating morphologic characteristics, genetic landscape, and clinical behavior in AdCC.
- MeSH
- Carcinoma, Adenoid Cystic * genetics pathology MeSH
- Adult MeSH
- Phenotype MeSH
- Gene Fusion MeSH
- Oncogene Proteins, Fusion genetics MeSH
- Genetic Predisposition to Disease MeSH
- In Situ Hybridization, Fluorescence * MeSH
- Immunohistochemistry MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Mutation * MeSH
- DNA Mutational Analysis MeSH
- Biomarkers, Tumor * genetics MeSH
- Paranasal Sinus Neoplasms * genetics pathology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- NFI Transcription Factors genetics MeSH
- High-Throughput Nucleotide Sequencing * MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
The European Chemical Biology Database (ECBD, https://ecbd.eu) serves as the central repository for data generated by the EU-OPENSCREEN research infrastructure consortium. It is developed according to FAIR principles, which emphasize findability, accessibility, interoperability and reusability of data. This data is made available to the scientific community following open access principles. The ECBD stores both positive and negative results from the entire chemical biology project pipeline, including data from primary or counter-screening assays. The assays utilize a defined and diverse library of over 107 000 compounds, the annotations of which are continuously enriched by external user supported screening projects and by internal EU-OPENSCREEN bioprofiling efforts. These compounds were screened in 89 currently deposited datasets (assays), with 48 already being publicly accessible, while the remaining will be published after a publication embargo period of up to 3 years. Together these datasets encompass ∼4.3 million experimental data points. All public data within ECBD can be accessed through its user interface, API or by database dump under the CC-BY 4.0 license.