Východiska: V současné době bylo popsáno již více než 200 nádorových syndromů. Ve většině populací jsou však dostupné pouze informace o mutačním spektru ve vysoce rizikových genech limitované počtem vyšetřených jedinců. Metody: V rámci retrospektivní NGS studie v Masarykově onkologickém ústavu bylo provedeno vyšetření TruSight Cancer panelem zahrnujícím 94 genů u 50 vysoce rizikových jedinců se závažnou osobní i rodinnou anamnézou onkologického onemocnění bez detekované kauzální mutace v genech BRCA1, BRCA2, MLH1, MSH2, MSH6, TP53 nebo APC dle indikace. Všechny patogenní nebo pravděpodobně patogenní mutace detekované pomocí NGS technologie byly potvrzeny Sangerovým sekvenováním. Výsledky: Ztrátové (frame-shift, nonsense) mutace byly detekovány v genech ATM, BAP1, FANCC, FANCI, PMS2, SBDS, ERCC2, RECQL4. Několik patogenních nebo pravděpodobně patogenních mutací (missense, predikované sestřihové mutace, in-frame delece/inzerce) bylo zachyceno v genech ATM, BRIP1, CDH1, CHEK2, ERCC2, ERCC3, ERCC4, FANCA, MC1R, MEN1, MRE11A, MUTYH, PALB2, RAD51C, RET, SDHB, STK11. Nacházejí se ve vysoce konzervovaných funkčních doménách proteinů a některé z nich již byly prokázány jako patogenní mutace pomocí funkčních testů nebo u závažných autozomálně recesivních syndromů (Ataxia telangiectasia, Fanconiho anémie). Většina z detekovaných missense variant v řadě dalších genů je nejasného klinického významu a determinace jejich významnosti zůstává otevřená do budoucna. Závěr: Detekce variant se střední nebo nízkou penetrancí má pouze limitovanou klinickou využitelnost. Panelové testování u vysoce rizikových osob s nádorovým onemocněním může poskytnout důležitou informaci o příčině nádorové predispozice a může pomoci s výběrem optimální léčby a v preventivní personalizované onkologii.
Background: Currently, more than 200 hereditary cancer syndromes have been described, yet, in most countries genetic testing is restricted to a narrow spectrum of genes within a limited group of people tested. Methods: For this retrospective study we used the TruSight cancer panel (Illumina) – NGS panel targeting 94 cancer predisposition genes in order to analyze 50 high-risk cancer patients with significant personal and family history of cancer who did not carry mutations in BRCA1, BRCA2, MLH1, MSH2, MSH6, TP53 or APC genes. All pathogenic and potentially pathogenic mutations detected by NGS technology have been confirmed by Sanger sequencing. Results: There were several deleterious (frame-shift/nonsense) mutations detected in ATM, BAP1, FANCC, FANCI, PMS2, SBDS, ERCC2, RECQL4 genes. Various pathogenic or potentially pathogenic (missense, predicted splice site, in-frame insertion/deletion) mutations were detected in ATM, BRIP1, CDH1, CHEK2, ERCC2, ERCC3, ERCC4, FANCA, MC1R, MEN1, MRE11A, MUTYH, PALB2, RAD51C, RET, SDHB, STK11. These mutations affect highly conserved protein domains and affect their function as proved by the available functional assays. They were confirmed to be pathogenic as an „Parent No2 “ in serious recessive diseases such as Ataxia telangiectasia or Fanconi anemia. The clinical significance of the majority of detected missense variants still remains to be identified. Conclusion: Moderate or low penetrance variants are of limited clinical importance. Panel genetic testing in high-risk individuals with cancer provides important information concerning the cause of the investigated cancer, and may assist in the risk assesment and optimal management of the cancer, as well as in further preventive care. Key words: hereditary cancer syndromes – hereditary breast and ovarian cancer syndrome – hereditary nonpolyposis colorectal cancer – high-throughput DNA sequencing – TruSight cancer panel – MiSeq This work was supported by MH CZ – DRO (MMCI, 00209805) and by the State budget project of CR (OP VaVpI – RECAMO CZ.1.05/2.1.00/03.0101). The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers. Submitted: 20. 8. 2015 Accepted: 22. 9. 2015
- Keywords
- hereditární nádorové syndromy, TruSight cancer panel, sekvenování nové generace, ATM mutace, BAP1, PMS2, FANCI, RAD51C, BRIP1, ztrátové mutace,
- MeSH
- Adenosine Triphosphatases genetics MeSH
- Medical History Taking MeSH
- Ataxia Telangiectasia Mutated Proteins genetics MeSH
- Neoplastic Syndromes, Hereditary * diagnosis genetics MeSH
- Colorectal Neoplasms, Hereditary Nonpolyposis genetics MeSH
- Hereditary Breast and Ovarian Cancer Syndrome genetics MeSH
- DNA-Binding Proteins genetics MeSH
- Adult MeSH
- DNA Repair Enzymes genetics MeSH
- Genetic Predisposition to Disease MeSH
- Genetic Testing MeSH
- Risk Assessment MeSH
- Middle Aged MeSH
- Humans MeSH
- Mutation, Missense MeSH
- Adolescent MeSH
- Tumor Suppressor Proteins genetics MeSH
- Kidney Neoplasms genetics MeSH
- Breast Neoplasms genetics MeSH
- Pancreatic Neoplasms genetics MeSH
- Colonic Neoplasms genetics MeSH
- Codon, Nonsense MeSH
- Pilot Projects MeSH
- Fanconi Anemia Complementation Group Proteins genetics MeSH
- Retrospective Studies MeSH
- Rhabdomyosarcoma genetics MeSH
- RNA Helicases genetics MeSH
- Pedigree MeSH
- Sequence Analysis, DNA * methods utilization MeSH
- Ubiquitin Thiolesterase genetics MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Female MeSH
- Publication type
- Case Reports MeSH
- Research Support, Non-U.S. Gov't MeSH
Cíl: Molekulární klasifikace endometriálních karcinomů (EK) dělí tyto tumory do čtyř distinktních skupin definovaných genetickým pozadím. Vzhledem k prokázanému klinickému významu se genetické vyšetření EK stává nedílnou součástí dia gnostického postupu. Doporučený dia gnostický algoritmus zahrnuje molekulárně genetický průkaz mutace genu POLE, přičemž všechny další potřebné parametry se vyšetřují pouze imunohistochemicky. Cílem této studie je sdílet naše zkušenosti s molekulární klasifikací EK, která je na našem pracovišti prováděna pomocí imunohistochemie a následně sekvenování nové generace (NGS). Metodika: Do studie byly zařazeny všechny EK dia gnostikované na Šiklově ústavu patologie ve FN Plzeň a v Bioptické laboratoři, s. r. o., od roku 2020 do současnosti. Všechny EK byly prospektivně vyšetřeny nejprve imunohistochemicky (MMR proteiny, p53) a následně molekulárně geneticky pomocí NGS za použití „customizovaného Gyncore panelu“ (zahrnujícího geny POLE, POLD1, MSH2, MSH6, MLH1, PMS2, TP53, PTEN, ARID1A, PIK3CA, PIK3R1, CTNNB1, KRAS, NRAS, BRCA1, BRCA2, BCOR, ERBB2), na jehož základě byly rozčleněny do čtyř molekulárně distinktních skupin [POLE mutované EK (typ 1), hypermutované (MMR deficientní, typ 2), EK bez specifického molekulárního profilu (NSMP, typ 3) a TP53 mutované („copy number high“, typ 4) ]. Výsledky: Soubor zahrnuje celkem 270 molekulárně klasifikovaných EK. Osmnáct případů (6,6 %) bylo klasifikováno jako POLE mutované, 85 případů (31,5 %) jako hypermutované (MMR deficientní), 137 případů (50,7 %) jako EK bez specifického molekulárního profilu, 30 případů (11,1 %) jako TP53 mutované. Dvanáct případů (4,4 %) bylo zařazeno jako „multiple classifier“. Skupina NSMP se často vyznačovala mnohočetnými genetickými alteracemi, přičemž nejčastější byla mutace genu PTEN (44 % v rámci NSMP), následovaly PIK3CA (30 %), ARID1A (21 %) a KRAS (9 %). Závěr: Molekulární klasifikace EK pomocí metody NGS umožňuje v porovnání s doporučeným dia gnostickým algoritmem spolehlivější klasifikaci EK do jednotlivých molekulárních skupin. Kromě toho dovoluje NGS vyšetření odkrýt komplexní genetické pozadí jednotlivých EK, což má význam zvláště v rámci skupiny „bez specifického molekulárního profilu“, kde jsou tato data podkladem pro výzkum léčebných schémat s příslibem cílené terapie tohoto typu nádorů.
Objective: Molecular classification of endometrial carcinomas (EC) divides these neoplasms into four distinct subgroups defined by a molecular background. Given its proven clinical significance, genetic examination is becoming an integral component of the diagnostic procedure. Recommended diagnostic algorithms comprise molecular genetic testing of the POLE gene, whereas the remaining parameters are examined solely by immunohistochemistry. The aim of this study is to share our experiences with the molecular classification of EC, which has been conducted using immunohistochemistry and next-generation sequencing (NGS) at our department. Methods: This study includes all cases of EC diagnosed at Šikl's Department of Pathology and Biopticka Laboratory Ltd. from 2020 to the present. All ECs were prospectively examined by immunohistochemistry (MMR, p53), fol lowed by NGS examination using a customized Gyncore panel (including genes POLE, POLD1, MSH2, MSH6, MLH1, PMS2, TP53, PTEN, ARID1A, PIK3CA, PIK3R1, CTNNB1, KRAS, NRAS, BRCA1, BRCA2, BCOR, ERBB2), based on which the ECs were classified into four molecularly distinct groups [POLE mutated EC (type 1), hypermutated (MMR deficient, type 2), EC with no specific molecular profile (type 3), and TP53 mutated (“copy number high”, type 4)]. Results: The cohort comprised a total of 270 molecularly classified ECs. Eighteen cases (6.6%) were classified as POLE mutated EC, 85 cases (31.5%) as hypermutated EC (MMR deficient), 137 cases (50.7%) as EC of no specific molecular profile, and 30 cases (11.1%) as TP53 mutated EC. Twelve cases (4.4%) were classified as “multiple classifier” endometrial carcinoma. ECs of no specific molecular profile showed multiple genetic alterations, with the most common mutations being PTEN (44% within the group of NSMP), fol lowed by PIK3CA (30%), ARID1A (21%), and KRAS (9%). Conclusion: In comparison with recommended diagnostic algorithms, NGS provides a more reliable classification of EC into particular molecular subgroups. Furthermore, NGS reveals the complex molecular genetic background in individual ECs, which is especially significant within ECs with no specific molecular profile. These data can serve as a springboard for the research of therapeutic programs committed to targeted therapy in this type of tumor.
- MeSH
- Immunohistochemistry classification methods MeSH
- Classification methods MeSH
- Humans MeSH
- Pathology, Molecular methods MeSH
- Mutation genetics MeSH
- Endometrial Neoplasms * diagnosis genetics classification pathology MeSH
- High-Throughput Nucleotide Sequencing * classification methods MeSH
- Check Tag
- Humans MeSH
- Female MeSH
- Publication type
- Clinical Study MeSH
- Research Support, Non-U.S. Gov't MeSH
Dědičná nádorová onemocnění tvoří malou, ale klinicky významnou část onkologických onemocnění, v České republice se jedná ročně o několik tisíc osob. Identifikace kauzální mutace v nádorových predispozičních genech má u těchto nemocných zásadní prognostický a v některých případech i prediktivní význam. Mimo to je podmínkou cílené preventivní péče o asymptomatické nosiče mutací v rodinách se zvýšeným rizikem vzniku nádorového onemocnění. Do současné doby bylo charakterizováno více než 150 nádorových predispozičních genů. Mutace většiny z nich se vyskytují vzácně, s výraznou populační specifičností a jejich klinická interpretace je často obtížná. Diagnostiku raritních variant technicky zjednodušují postupy využívající sekvenování nové generace, které umožňují vyšetření rozsáhlých sad genů. Za účelem racionalizace diagnostiky hereditárních nádorových syndromů v České republice jsme navrhli sekvenační panel „CZECANCA“, který cílí na vyšetření 219 genů asociovaných s dědičnými nádorovými onemocněními. Panel obsahuje přes 50 klinicky významných genů vysokého a středního rizika, zbývající geny tvoří málo prozkoumané a kandidátní predispoziční geny, jejichž vrozené mutace mají nejasnou klinickou interpretaci. Společně s návrhem panelu byl optimalizován postup vlastního sekvenování a bioinformatického zpracování sekvenačních dat pro tvorbu jednotné databáze genotypů analyzovaných vzorků. Cílem projektu je nabídnout použití sekvenačního panelu včetně optimalizovaného postupu sekvenování nové generace diagnostickým laboratořím v České republice a zajistit sdílení genotypů a klinických údajů o vyšetřovaných pacientech ve společné databázi za účelem zlepšení možnosti klinické interpretace vzácných mutací u vysoce rizikových osob.
Individuals with hereditary cancer syndromes form a minor but clinically important subgroup of oncology patients, comprising several thousand cases in the Czech Republic annually. In these patients, the identification of pathogenic mutations in cancer susceptibility genes has an important predictive and, in some cases, prognostic value. It also enables rational preventive strategies in asymptomatic carriers from affected families. More than 150 cancer susceptibility genes have been described so far; however, mutations in most of them are very rare, occurring with substantial population variability, and hence their clinical interpretation is very complicated. Diagnostics of mutations in cancer susceptibility genes have benefited from the broad availability of next-generation sequencing analyses using targeted gene panels. In order to rationalize the diagnostics of hereditary cancer syndromes in the Czech Republic, we have prepared the sequence capture panel “CZECANCA”, targeting 219 cancer susceptibility genes. Besides more than 50 clinically important high- and moderate-penetrance susceptibility genes, the panel also targets less common candidate genes with uncertain clinical relevance. Alongside the panel design, we have optimized the analytical and bioinformatics pipeline, which will facilitate establishing a collective nationwide database of genotypes and clinical data from the analyzed individuals. The key objective of this project is to provide diagnostic laboratories in the Czech Republic with a reliable procedure and collective database improving the clinical utility of next-generation sequencing analyses in high-risk patients, which would help improve the interpretation of rare or population-specific variants in cancer susceptibility genes. Key words: genetic predisposition testing – hereditary cancer syndromes – high-throughput nucleotide sequencing – genetic information databases – panel sequencing – sequence capture – next-generation sequencing (NGS) This work was supported by Czech Ministry of Health grants No. NT14054, NV15-28830A, NV15--27695A and The League Against Cancer Prague. The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers. Submitted: 2. 10. 2015 Accepted: 13. 10. 2015
- Keywords
- sekvenování nové generace (NGS), cílené sekvenování, panelové sekvenování,
- MeSH
- Databases, Genetic * utilization MeSH
- Neoplastic Syndromes, Hereditary * diagnosis genetics MeSH
- Genetic Predisposition to Disease MeSH
- Genetic Testing methods MeSH
- Humans MeSH
- Sequence Analysis, DNA MeSH
- Information Dissemination MeSH
- Computational Biology MeSH
- High-Throughput Nucleotide Sequencing * MeSH
- Research Design MeSH
- Germ-Line Mutation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
Nestr.
Vysokokapacitní cílené sekvenování nové generace (NGS) umožňuje paralelní vyšetření mnoha nádorových predispozičních genů (panelů) u onkologicky nemocných s podezřením na výskyt dědičného nádorového syndromu. Identifikace nosičů patogenních mutací u pacientů a jejich příbuzných má zásadní prognostický ale i prediktivní význam. Plnou implementaci výsledků NGS do klinické péče o tyto vysoce rizikové osoby omezuje interpretace nacházených variant s nejasným klinickým významem (VUS). Pro zlepšení diagnostického přínosu NGS u nádorových syndromů provedeme komplexní bioinformatickou reanalýzu dat z nádorových NGS panelů (získaných při rutinních vyšetřeních indikovaných nemocných ve 4 centrech v ČR) a asociaci nalezených variant s klinickými a histopatologickými údaji pacientů. Analýza nádorového NGS panelu u 1000 nenádorových kontrol umožní identifikaci populačně specifického genetického pozadí. Vybrané VUS se zjištěným rekurentním výskytem budou charakterizovány pomocí in silico přístupů a funkčních in vitro testů identifikujících patogenetické mechanismy jejich působení.; High-throughput targeted next-gen sequencing (NGS) enable simultaneous analysis of many cancer-susceptibility genes (panels) in oncological patients with suspected hereditary cancer syndrome. Identification of pathogenic mutations in high-risk patients and their relatives has high prognostic and predictive importance. The utility of NGS data for clinical management of high-risk patients is hampered by complicated interpretation of variants of uncertain significance (VUS). In order to improve the diagnostic power of NGS, we will perform comprehensive reanalysis of NGS cancer panel data (obtained from analyses of high-risk individuals at 4 large Czech centers) and correlation of these data with patients’ clinical and histopathological characteristics. To uncover population specific genetic background, we will perform cancer panel NGS analysis of 1000 non-cancer controls. The VUS in cancer-susceptibility genes will be analyzed by in silico approaches. To describe mechanisms of their pathogenicity, selected recurrent variants will be enrolled into the in vitro functional analysis.
- MeSH
- Neoplastic Syndromes, Hereditary diagnosis genetics MeSH
- Genetic Association Studies MeSH
- Humans MeSH
- Mutation genetics MeSH
- Prognosis MeSH
- Computational Biology methods MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Check Tag
- Humans MeSH
- Conspectus
- Patologie. Klinická medicína
- NML Fields
- onkologie
- genetika, lékařská genetika
- NML Publication type
- závěrečné zprávy o řešení grantu AZV MZ ČR
Závěrečná zpráva o řešení grantu Agentury pro zdravotnický výzkum MZ ČR
nestr.
Cílené sekvenování nové generace umožňuje analýzu stovek nádorových predispozičních genů u onkologicky nemocných s podezřením na výskyt dědičné formy onemocnění. Identifikace příčinných mutací má zásadní prognostický, ale i prediktivní význam u pacientů a jejich příbuzných. S podporou předchozího projektu AZV 16-29959A (2016-19) jsme ustanovili konsorcium 9 laboratoří unifikující vyšetření nádorové predispozice pomocí CZECANCA panelu, vytvořili jsme společnou databázi genotypů analyzovaných jednotným bioinformatickým postupem u >6200 vysoce rizikových onkologických pacientů, provedli jsme analýzu >700 vzorků nenádorových kontrol identifikující genetické pozadí v ČR a připravili jsme in vitro modelové systémy pro hodnocení variant nejasného významu. Cílem navazujícího projektu je pokračování těchto aktivit, umožňující zevrubnou charakterizaci architektury nádorové predispozice u různých typů nádorů v ČR, určení klinické významnosti populačně specifických variant, identifikaci rizik u doposud nejasně charakterizovaných predispozičních genů s cílem zlepšení péče o vysoce rizikové osoby.; Targeted next gene sequencing enables to analyze hundreds of cancer predisposition genes in high-risk individuals. Identification of causal mutation has critical prognostic a predictive significance for the patient and their relatives. Supported by previous grant AZV 16-29959A (2016-19), we established a consortium of 9 Czech clinical laboratories unifying cancer predisposition analysis by CZECANCA (Czech cancer panel for clinical application) approach, developed joined database of over 6200 genotypes of analyzed patients, analyzed over 700 controls enabling to identify population-specific genetic background and prepared model systems for in vitro analyses of variants of uncertain significance in several genes. Proposed project aims to continue in these activities to comprehensively characterize genetic architecture of cancer predisposition in patients with various cancers in the Czech Republic, to identify clinically important population-specific mutations, and to elucidate cancer risks associated with mutations in poorly characterized predisposition genes.
- Keywords
- NGS, NGS, bioinformatika, bioinformatics, nádorová predispozice, cancer predisposition, dědičné nádory, funkční analýzy, hereditary tumors, functional analyses,
- NML Publication type
- závěrečné zprávy o řešení grantu AZV MZ ČR
Germline DNA testing using the next-gene-ration sequencing (NGS) technology has become the analytical standard for the diagnostics of hereditary diseases, including cancer. Its increasing use places high demands on correct sample identification, independent confirmation of prioritized variants, and their functional and clinical interpretation. To streamline these processes, we introduced parallel DNA and RNA capture-based NGS using identical capture panel CZECANCA, which is routinely used for DNA analysis of hereditary cancer predisposition. Here, we present the analytical workflow for RNA sample processing and its analytical and diagnostic performance. Parallel DNA/RNA analysis allowed credible sample identification by calculating the kinship coefficient. The RNA capture-based approach enriched transcriptional targets for the majority of clinically relevant cancer predisposition genes to a degree that allowed analysis of the effect of identified DNA variants on mRNA processing. By comparing the panel and whole-exome RNA enrichment, we demonstrated that the tissue-specific gene expression pattern is independent of the capture panel. Moreover, technical replicates confirmed high reproducibility of the tested RNA analysis. We concluded that parallel DNA/RNA NGS using the identical gene panel is a robust and cost-effective diagnostic strategy. In our setting, it allows routine analysis of 48 DNA/RNA pairs using NextSeq 500/550 Mid Output Kit v2.5 (150 cycles) in a single run with sufficient coverage to analyse 226 cancer predisposition and candidate ge-nes. This approach can replace laborious Sanger confirmatory sequencing, increase testing turnaround, reduce analysis costs, and improve interpretation of the impact of variants by analysing their effect on mRNA processing.
- MeSH
- DNA genetics MeSH
- Genetic Predisposition to Disease * MeSH
- Humans MeSH
- Neoplasms genetics diagnosis MeSH
- Reproducibility of Results MeSH
- RNA genetics MeSH
- Sequence Analysis, DNA methods MeSH
- Sequence Analysis, RNA methods MeSH
- High-Throughput Nucleotide Sequencing * methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
Non-syndromic autosomal recessive hearing loss is an extremely heterogeneous disease caused by mutations in more than 80 genes. We examined Czech patients with early/prelingual non-syndromic, presumably genetic hearing loss (NSHL) without known cause after GJB2 gene testing. Four hundred and twenty-one unrelated patients were examined for STRC gene deletions with quantitative comparative fluorescent PCR (QCF PCR), 197 unrelated patients with next-generation sequencing by custom-designed NSHL gene panels and 19 patients with whole-exome sequencing (WES). Combining all methods, we discovered the cause of the disease in 54 patients. The most frequent type of NSHL was DFNB16 (STRC), which was detected in 22 patients, almost half of the clarified patients. Other biallelic pathogenic mutations were detected in the genes: MYO15A, LOXHD1, TMPRSS3 (each gene was responsible for five clarified patients, CDH23 (four clarified patients), OTOG and OTOF (each gene was responsible for two clarified patients). Other genes (AIFM1, CABP2, DIAPH1, PTPRQ, RDX, SLC26A4, TBC1D24, TECTA, TMC1) that explained the cause of hearing impairment were further detected in only one patient for each gene. STRC gene mutations, mainly deletions remain the most frequent NSHL cause after mutations in the GJB2.
- MeSH
- Child MeSH
- Adult MeSH
- Genetic Predisposition to Disease MeSH
- Deafness embryology genetics pathology MeSH
- Cadherins genetics MeSH
- Connexin 26 genetics MeSH
- Humans MeSH
- Membrane Glycoproteins genetics MeSH
- Membrane Proteins genetics MeSH
- Intercellular Signaling Peptides and Proteins genetics MeSH
- Adolescent MeSH
- Young Adult MeSH
- Mutation genetics MeSH
- Myosins genetics MeSH
- Neoplasm Proteins genetics MeSH
- Hearing Loss epidemiology genetics pathology MeSH
- Exome Sequencing MeSH
- Serine Endopeptidases genetics MeSH
- Carrier Proteins genetics MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Molecular profiling of tumor samples has acquired importance in cancer research, but currently also plays an important role in the clinical management of cancer patients. Rapid identification of genomic aberrations improves diagnosis, prognosis and effective therapy selection. This can be attributed mainly to the development of next-generation sequencing (NGS) methods, especially targeted DNA panels. Such panels enable a relatively inexpensive and rapid analysis of various aberrations with clinical impact specific to particular diagnoses. In this review, we discuss the experimental approaches and bioinformatic strategies available for the development of an NGS panel for a reliable analysis of selected biomarkers. Compliance with defined analytical steps is crucial to ensure accurate and reproducible results. In addition, a careful validation procedure has to be performed before the application of NGS targeted assays in routine clinical practice. With more focus on bioinformatics, we emphasize the need for thorough pipeline validation and management in relation to the particular experimental setting as an integral part of the NGS method establishment. A robust and reproducible bioinformatic analysis running on powerful machines is essential for proper detection of genomic variants in clinical settings since distinguishing between experimental noise and real biological variants is fundamental. This review summarizes state-of-the-art bioinformatic solutions for careful detection of the SNV/Indels and CNVs for targeted sequencing resulting in translation of sequencing data into clinically relevant information. Finally, we share our experience with the development of a custom targeted NGS panel for an integrated analysis of biomarkers in lymphoproliferative disorders.
- Publication type
- Journal Article MeSH
BACKGROUND: Carriers of mutations in hereditary cancer predisposition genes represent a small but clinically important subgroup of oncology patients. The identification of causal germline mutations determines follow-up management, treatment options and genetic counselling in patients' families. Targeted next-generation sequencing-based analyses using cancer-specific panels in high-risk individuals have been rapidly adopted by diagnostic laboratories. While the use of diagnosis-specific panels is straightforward in typical cases, individuals with unusual phenotypes from families with overlapping criteria require multiple panel testing. Moreover, narrow gene panels are limited by our currently incomplete knowledge about possible genetic dispositions. METHODS: We have designed a multi-gene panel called CZECANCA (CZEch CAncer paNel for Clinical Application) for a sequencing analysis of 219 cancer-susceptibility and candidate predisposition genes associated with frequent hereditary cancers. RESULTS: The bioanalytical and bioinformatics pipeline was validated on a set of internal and commercially available DNA controls showing high coverage uniformity, sensitivity, specificity and accuracy. The panel demonstrates a reliable detection of both single nucleotide and copy number variants. Inter-laboratory, intra- and inter-run replicates confirmed the robustness of our approach. CONCLUSION: The objective of CZECANCA is a nationwide consolidation of cancer-predisposition genetic testing across various clinical indications with savings in costs, human labor and turnaround time. Moreover, the unified diagnostics will enable the integration and analysis of genotypes with associated phenotypes in a national database improving the clinical interpretation of variants.
- MeSH
- Neoplastic Syndromes, Hereditary genetics MeSH
- Genetic Predisposition to Disease MeSH
- Genetic Association Studies MeSH
- Genetic Testing MeSH
- Humans MeSH
- INDEL Mutation MeSH
- Mutation MeSH
- Biomarkers, Tumor * MeSH
- Reproducibility of Results MeSH
- Sensitivity and Specificity MeSH
- DNA Copy Number Variations MeSH
- Computational Biology methods MeSH
- High-Throughput Nucleotide Sequencing * methods standards MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH