In this study, lactic acid bacteria (LAB) isolation from fermented foods and molecular identification using magnetic bead technology were performed. And then exopolysaccharide (EPS) production possibility was tested in agar medium, and the positive ones were selected for the next step. The bacteria that could produce higher carbohydrate level were grown in MRS medium fortified with whey and pumpkin waste. In our study, 19 different LAB species were identified from fermented products collected from different places in Hatay (Türkiye) province. In molecular identification, universal primer pairs, p806R/p8FPL, and PEU7/DG74 were used for PCR amplification. After that, PCR products purified using paramagnetic bead technology were sequenced by the Sanger sequencing method. The dominant species, 23.8% of the isolates, were identified as Lactiplantibacillus plantarum. As a technological property of LAB, exopolysaccharide production capability of forty-two LAB isolate was tested in agar medium, and after eleven isolates were selected as positive. Two LAB (Latilactobacillus curvatus SHA2-3B and Loigolactobacillus coryniformis SHA6-3B) had higher EPS production capability when they were grown in MRS broth fortified with pumpkin waste and whey. The highest EPS content (1750 mg/L glucose equivalent) was determined in Loigolactobacillus coryniformis SHA6-3B grown in MRS broth fortified with 10% pumpkin waste. Besides the produced EPS samples were validated with FTIR and SEM methods.
- MeSH
- Polysaccharides, Bacterial * biosynthesis metabolism MeSH
- Cucurbita microbiology MeSH
- Fermentation MeSH
- Fermented Foods * microbiology MeSH
- Phylogeny MeSH
- Culture Media chemistry MeSH
- Lactobacillales * isolation & purification classification genetics metabolism MeSH
- Waste Products * analysis MeSH
- Food Microbiology * MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Whey MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: Severe combined immunodeficiency (SCID) is a fatal but treatable inborn error of immunity (IEI). Newborn screening (NBS) using T-cell receptor excision circles (TREC) has been adopted globally, with very few countries incorporating kappa recombination excision circles (KREC) to also detect early B-cell development disorders, such as X-linked agammaglobulinemia (XLA). OBJECTIVE: To evaluate the effectiveness of a 2-year pilot SCID NBS program in the Czech Republic, emphasising the utility of combined TREC/KREC screening. METHODS: Between January 2022 and December 2023, a dual TREC/KREC NBS pilot was conducted across the Czech Republic, alongside spinal muscular atrophy (SMA) screening. Approximately 200,000 newborns were screened using quantitative real-time PCR on dried blood spots collected 48-72 h after birth. RESULTS: The pilot referred 58 newborns, identifying 21 cases of IEI, including two SCID cases, with an overall incidence of TREC/KREC screenable IEI of 10.5/100,000 newborns. SCID incidence was 1/100,000. KREC screening proved invaluable, detecting 10 cases of congenital agammaglobulinemia including novel non-XLA forms, which increased the estimated incidence of agammaglobulinemia in the Czech Republic sixfold. Over one-third of low KREC results were linked to maternal immunosuppression. CONCLUSION: The Czech pilot demonstrated the effectiveness of integrated TREC/KREC NBS in detecting both T- and B-cell immunodeficiencies. As of 2024, SCID and SMA screening are included in the nationwide NBS, with KREC screening significantly improving early detection of B-cell disorders.
- MeSH
- Agammaglobulinemia diagnosis MeSH
- B-Lymphocytes immunology MeSH
- Genetic Diseases, X-Linked MeSH
- Humans MeSH
- Infant, Newborn MeSH
- Neonatal Screening * methods MeSH
- Pilot Projects MeSH
- Receptors, Antigen, T-Cell * genetics MeSH
- Severe Combined Immunodeficiency * diagnosis genetics epidemiology MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Infant, Newborn MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
Bats are the natural reservoirs for a variety of emerging and re-emerging viruses. Among them, rabies virus (genus Lyssavirus, family Rhabdoviridae) is one of the first and most emblematic described in these animals. Since its first description, several new bat lyssaviruses have been regularly identified. In addition to lyssaviruses, other bat rhabdoviruses have also been discovered, including members of the genera Vesiculovirus, Ledantevirus and, more recently, Alphanemrhavirus and Tupavirus. However, the family Rhabdoviridae is one of the most abundant and diverse viral families, with 434 officially recognized species, divided into 5 subfamilies and 56 different genera. The number of rhabdoviruses associated with bats is therefore probably higher than that currently available. In this study, we first developed and validated a combined nested RT-qPCR technique (pan-rhabdo RT-nqPCR) dedicated to the broad detection of animal rhabdoviruses. After validation, this technique was used for a large retrospective screening of archival bat samples (n = 1962), including blood (n = 816), brain (n = 723) and oral swab (n = 423). These samples were collected from various bat species over a 12-year period (2007-2019) in 9 different countries in Europe and Africa. A total of 23 samples (1.2%) from bat species Miniopterus schreibersii, Rhinolophus euryale and Rhinolophus ferrumequinum tested positive for rhabdovirus infection, including 17 (2.1%) blood and 6 (1.4%) oral swab samples, all collected from bats originating from the Mediterranean region. Complete virus genome sequences were obtained by next-generation sequencing for most of the positive samples. Molecular and phylogenetic analysis of these sequences demonstrated that the virus isolates, named Mediterranean bat virus (MBV), were closely related and represented a new species, Mediterranean vesiculovirus, within the genus Vesiculovirus. MBV was more specifically related to other bat vesiculoviruses previously described from China and North America, together clustering into a distinct group of bat viruses within this genus. Interestingly, our results suggest that MBV is widespread, at least in the western part of the Mediterranean region, where it circulates in the blood of several bat species. These results expand the host range and viral diversity of bat vesiculoviruses, and pave the way for further studies to determine the transmission route and dissemination dynamics of these viruses in bat colonies, as well as to assess their potential threat to public health.
- MeSH
- Chiroptera * virology MeSH
- Phylogeny MeSH
- Genome, Viral MeSH
- Rhabdoviridae Infections * veterinary epidemiology virology MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Vesiculovirus * genetics isolation & purification classification MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Mediterranean Region MeSH
BACKGROUND: Through the agnostic screening of patients with uncharacterised disease phenotypes for an upregulation of type I interferon (IFN) signalling, we identified a cohort of individuals heterozygous for mutations in PTPN1, encoding the protein-tyrosine phosphatase 1B (PTP1B). We aimed to describe the clinical phenotype and molecular and cellular pathology of this new disease. METHODS: In this case series, we identified patients and collected clinical and neuroradiological data through collaboration with paediatric neurology and clinical genetics colleagues across Europe (Czechia, France, Germany, Italy, Slovenia, and the UK) and Israel. Variants in PTPN1 were identified by exome and directed Sanger sequencing. The expression of IFN-stimulated genes was determined by quantitative (q) PCR or NanoString technology. Experiments to assess RNA and protein expression and to investigate type 1 IFN signalling were undertaken in patient fibroblasts, hTERT-immortalised BJ-5ta fibroblasts, and RPE-1 cells using CRISPR-Cas9 editing and standard cell biology techniques. FINDINGS: Between Dec 20, 2013, and Jan 11, 2023, we identified 12 patients from 11 families who were heterozygous for mutations in PTPN1. We found ten novel or very rare variants in PTPN1 (frequency on gnomAD version 4.1.0 of <1·25 × 10:sup>-6). Six variants were predicted as STOP mutations, two involved canonical splice-site nucleotides, and two were missense substitutions. In three patients, the variant occurred de novo, whereas in nine affected individuals, the variant was inherited from an asymptomatic parent. The clinical phenotype was characterised by the subacute onset (age range 1-8 years) of loss of motor and language skills in the absence of seizures after initially normal development, leading to spastic dystonia and bulbar involvement. Neuroimaging variably demonstrated cerebral atrophy (sometimes unilateral initially) or high T2 white matter signal. Neopterin in CSF was elevated in all ten patients who were tested, and all probands demonstrated an upregulation of IFN-stimulated genes in whole blood. Although clinical stabilisation and neuroradiological improvement was seen in both treated and untreated patients, in six of eight treated patients, high-dose corticosteroids were judged clinically to result in an improvement in neurological status. Of the four asymptomatic parents tested, IFN signalling in blood was normal (three patients) or minimally elevated (one patient). Analysis of patient blood and fibroblasts showed that tested PTPN1 variants led to reduced levels of PTPN1 mRNA and PTP1B protein, and in-vitro assays demonstrated that loss of PTP1B function was associated with impaired negative regulation of type 1 IFN signalling. INTERPRETATION: PTPN1 haploinsufficiency causes a type 1 IFN-driven autoinflammatory encephalopathy. Notably, some patients demonstrated stabilisation, and even recovery, of neurological function in the absence of treatment, whereas in others, the disease appeared to be responsive to immune suppression. Prospective studies are needed to investigate the safety and efficacy of specific immune suppression approaches in this disease population. FUNDING: The UK Medical Research Council, the European Research Council, and the Agence Nationale de la Recherche.
- MeSH
- Child MeSH
- Haploinsufficiency * genetics MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Mutation genetics MeSH
- Brain Diseases genetics MeSH
- Neuroinflammatory Diseases genetics MeSH
- Child, Preschool MeSH
- Protein Tyrosine Phosphatase, Non-Receptor Type 1 * genetics MeSH
- Check Tag
- Child MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
OBJECTIVES: The aim of the study was to evaluate the efficiency of molecular diagnostics of tick-borne encephalitis (TBE) and to correlate viral RNA (vRNA) detection with the clinical and laboratory data. METHODS: Clinical samples from 1125 patients from South Bohemia, Czech Republic, a highly endemic TBE region, were screened for TBE virus (TBEV) RNA by RT-qPCR. Samples included blood, serum, cerebrospinal fluid (CSF), and urine. RESULTS: TBEV RNA was detected in 14 patients with clinically proven TBE. TBEV RNA was most frequently detected in sera during early infection (11/37 patients tested, 29.7%) but decreased with rising IgG antibody response (3/228, 1.3%). Detection in CSF and urine was infrequent (1/30, 3.3% and 1/52, 1.9%, respectively). Additionally, five patients initially not diagnosed with TBE were retrospectively found to have TBEV RNA in serum, indicating possible underdiagnosis, particularly in mild or atypical presentations. The study also highlighted the diagnostic challenge of an immunocompromised patient whose delayed antibody response hindered timely diagnosis. In such cases, RT-qPCR could significantly shorten the diagnostic timeline. CONCLUSIONS: These findings underscore the value of early RNA detection in improving the diagnosis of TBE and may in the future facilitate the early administration of potential treatment, thereby improving patient outcomes.
- MeSH
- Molecular Diagnostic Techniques methods MeSH
- Child MeSH
- Adult MeSH
- Immunoglobulin G blood MeSH
- Encephalitis, Tick-Borne * diagnosis virology MeSH
- Real-Time Polymerase Chain Reaction MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Child, Preschool MeSH
- Antibodies, Viral blood MeSH
- RNA, Viral * blood cerebrospinal fluid isolation & purification MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Encephalitis Viruses, Tick-Borne * isolation & purification genetics MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Child, Preschool MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Czech Republic MeSH
Environmental pollution is a serious problem that can cause sicknesses, fatality, and biological contaminants such as bacteria, which can trigger allergic reactions and infectious illnesses. There is also evidence that environmental pollutants can have an impact on the gut microbiome and contribute to the development of various mental health and metabolic disorders. This study aimed to study the antibiotic resistance and virulence potential of environmental Pseudomonas aeruginosa (P. aeruginosa) isolates in slaughterhouses. A total of 100 samples were collected from different slaughterhouse tools. The samples were identified by cultural and biochemical tests and confirmed by the VITEK 2 system. P. aeruginosa isolates were further confirmed by CHROMagarTM Pseudomonas and genetically by rpsL gene analysis. Molecular screening of virulence genes (fimH, papC, lasB, rhlI, lasI, csgA, toxA, and hly) and antibiotic resistance genes (blaCTX-M, blaAmpC, blaSHV, blaNDM, IMP-1, aac(6')-Ib-, ant(4')IIb, mexY, TEM, tetA, and qnrB) by PCR and testing the antibiotic sensitivity, biofilm formation, and production of pigments, and hemolysin were carried out in all isolated strains. A total of 62 isolates were identified as P. aeruginosa. All P. aeruginosa isolates were multidrug-resistant and most of them have multiple resistant genes. blaCTX-M gene was detected in all strains; 23 (37.1%) strains have the ability for biofilm formation, 33 strains had virulence genes, and 26 isolates from them have more than one virulence genes. There should be probably 60 (96.8%) P. aeruginosa strains that produce pyocyanin pigment. Slaughterhouse tools are sources for multidrug-resistant and virulent pathogenic microorganisms which are a serious health problem. Low-hygienic slaughterhouses could be a reservoir for resistance and virulence genes which could then be transferred to other pathogens.
- MeSH
- Anti-Bacterial Agents * pharmacology MeSH
- Drug Resistance, Bacterial genetics MeSH
- Biofilms drug effects growth & development MeSH
- Virulence Factors * genetics MeSH
- Abattoirs * MeSH
- Microbial Sensitivity Tests * MeSH
- Environmental Microbiology MeSH
- Pseudomonas aeruginosa * genetics drug effects pathogenicity isolation & purification MeSH
- Virulence genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
PURPOSE: Preimplantation genetic testing for monogenic disorders (PGT-M) allows early diagnosis in embryos conceived in vitro. PGT-M helps to prevent known genetic disorders in affected families and ensures that pathogenic variants in the male or female partner are not passed on to offspring. The trend in genetic testing of embryos is to provide a comprehensive platform that enables robust and reliable testing for the causal pathogenic variant(s), as well as chromosomal abnormalities that commonly occur in embryos. In this study, we describe PGT protocol that allows direct mutation testing, haplotyping, and aneuploidy screening. METHODS: Described PGT protocol called OneGene PGT allows direct mutation testing, haplotyping, and aneuploidy screening using next-generation sequencing (NGS). Whole genome amplification product is combined with multiplex PCR used for SNP enrichment. Dedicated bioinformatic tool enables mapping, genotype calling, and haplotyping of informative SNP markers. A commercial software was used for aneuploidy calling. RESULTS: OneGenePGT has been implemented for seven of the most common monogenic disorders, representing approximately 30% of all PGT-M indications at our IVF centre. The technique has been thoroughly validated, focusing on direct pathogenic variant testing, haplotype identification, and chromosome abnormality detection. Validation results show full concordance with Sanger sequencing and karyomapping, which were used as reference methods. CONCLUSION: OneGene PGT is a comprehensive, robust, and cost-effective method that can be established for any gene of interest. The technique is particularly suitable for common monogenic diseases, which can be performed based on a universal laboratory protocol without the need for set-up or pre-testing.
- MeSH
- Aneuploidy MeSH
- Blastocyst pathology MeSH
- Genetic Testing methods MeSH
- Humans MeSH
- Mutation genetics MeSH
- Preimplantation Diagnosis * methods MeSH
- Pregnancy MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
The cyanobacterial dialkylresorcinol bartolosides were initially reported to feature glycosylated and halogenated moieties. Later, biosynthetic and in vitro studies showed that the chlorinated alkyl chains are utilized for a nucleophilic substitution with free fatty acid carboxylates from primary metabolism, generating bartoloside esters. Here, we applied a workflow based on PCR screening coupled to LC-HRESIMS and molecular network analysis with the aim of discovering additional bartoloside diversity. We report the annotation of 27 bartoloside and bartoloside ester derivatives, including the characterization of two new bartolosides, underlining the breadth of structures generated by bartoloside biosynthetic pathways. Some of the herein reported bartolosides feature hydroxylation in their side chains, a modification that has not been associated with this metabolite family.
- MeSH
- Molecular Structure MeSH
- Resorcinols * chemistry MeSH
- Cyanobacteria * chemistry metabolism MeSH
- Publication type
- Journal Article MeSH
... CONTENTS -- PREFACE 7 -- INTRODUCTION 8 -- Development of PCR Diagnostics for Detection of SARS-CoV-2 ... ... 9 -- Laboratory PCR Diagnostics as a Key Parameter for Planning a Treatment 10 -- Barriers to Increasing ... ... Consequent Detection of SARS-CoV-2 by RT-qPCR 43 -- Pooling as a Tool for High-Throughput SARS-CoV-2 PCR ... ... Testing 43 -- CHARACTERIZATION OF SARS-COV-2 45 -- Screening of Different SARS-CoV-2 Variants in the ... ... Sequencing of SARS-CoV-2 48 -- Next Generation Sequencing (NGS) 49 -- Sequencing of Total RNA 49 -- PCR ...
First edition 70 stran : ilustrace ; 23 cm
- MeSH
- Respiratory Tract Infections diagnosis MeSH
- Polymerase Chain Reaction methods MeSH
- COVID-19 Testing methods MeSH
- Virology MeSH
- Virus Diseases diagnosis MeSH
- Publication type
- Monograph MeSH
- Conspectus
- Patologie. Klinická medicína
- NML Fields
- pneumologie a ftizeologie
- diagnostika
Sand flies (Diptera: Psychodidae: Phlebotominae) are blood-feeding insects that transmit the protozoan parasites Leishmania spp. and various arboviruses. The Balkan region, including the Republic of Kosovo, harbours a diverse sand fly fauna. Vector species of Leishmania infantum as well as phleboviruses are endemic; however, recent data are scarce. We performed a cross-sectional study to update the current sand fly distribution in Kosovo and assess biological as well as environmental factors associated with sand fly presence. CDC light trapping was conducted at 46 locations in 2022 and 2023, specifically targeting understudied regions in Kosovo. Individual morphological species identification was supported by molecular barcoding. The occurrence data of sand flies was used to create distribution maps and perform environmental analyses, taking elevation, wind speed and climate-related factors into account. In addition, PCR-based blood meal analysis and pathogen screening were conducted. Overall, 303 specimens of six sand fly species were trapped, predominated by Phlebotomus neglectus (97%). Barcodes from eight of nine known endemic sand fly species were obtained. Combining our data with previous surveys, we mapped the currently known sand fly distribution based on more than 4000 specimens at 177 data points, identifying Ph. neglectus and Ph. perfiliewi as the predominant species. Environmental analyses depicted two geographical groups of sand flies in Kosovo, with notable differences between the species. In total, 223 blood meals of five sand fly species were analysed. Of seven identified host species, the predominant blood meal source was observed to be cattle, but the DNA of dogs and humans, among others, was also detected. This study assessed biological as well as ecological factors of sand fly occurrence, which should help better understand and evaluate potential hot spots of disease transmission in Kosovo.
- MeSH
- Insect Vectors * physiology parasitology MeSH
- Leishmania infantum physiology MeSH
- Phlebotomus * classification physiology parasitology MeSH
- Cross-Sectional Studies MeSH
- Dogs MeSH
- Psychodidae physiology parasitology MeSH
- Animal Distribution * MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Dogs MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Kosovo MeSH