ATP-binding cassette (ABC) transporters in human metabolism and diseases
Dotaz
Zobrazit nápovědu
The prognosis of esophageal cancer (EC) is poor, despite considerable effort of both experimental scientists and clinicians. The tri-modality treatment consisting of neoadjuvant chemoradiation followed by surgery has remained the gold standard over decades, unfortunately, without significant progress in recent years. Suitable prognostic factors indicating which patients will benefit from this tri-modality treatment are missing. Some patients rapidly progress on the neoadjuvant chemoradiotherapy, which is thus useless and sometimes even harmful. At the same time, other patients achieve complete remission on neoadjuvant chemoradiotherapy and subsequent surgery may increase their risk of morbidity and mortality. The prognosis of patients ranges from excellent to extremely poor. Considering these differences, the role of drug metabolizing enzymes and transporters, among other factors, in the EC response to chemotherapy may be more important compared, for example, with pancreatic cancer where all patients progress on chemotherapy regardless of the treatment or disease stage. This review surveys published literature describing the potential role of ATP-binding cassette transporters, the genetic polymorphisms, epigenetic regulations, and phenotypic changes in the prognosis and therapy of EC. The review provides knowledge base for further research of potential predictive biomarkers that will allow the stratification of patients into defined groups for optimal therapeutic outcome.
- MeSH
- ABC transportéry genetika metabolismus MeSH
- epigeneze genetická MeSH
- lidé MeSH
- nádorové biomarkery genetika metabolismus MeSH
- nádory jícnu genetika metabolismus terapie MeSH
- neoadjuvantní terapie metody MeSH
- polymorfismus genetický MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Maraviroc is a chemokine receptor 5 (CCR5) inhibitor used in the treatment of human immunodeficiency virus (HIV) that also shows therapeutic potential for several autoimmune, cancer, and inflammatory diseases that can afflict pregnant women. However, only limited information exists on the mechanisms underlying the transplacental transfer of the drug. We aimed to expand the current knowledge base on how maraviroc interacts with several placental ATP-binding cassette (ABC) efflux transporters that have a recognized role in the protection of a developing fetus: P-glycoprotein (ABCB1), breast cancer resistance protein (ABCG2), and multidrug resistance protein 2 (ABCC2). We found that maraviroc does not inhibit any of the three studied ABC transporters and that its permeability is not affected by ABCG2 or ABCC2. However, our in vitro results revealed that maraviroc shows affinity for human ABCB1 and the endogenous canine P-glycoprotein (Abcb1) expressed in Madin-Darby canine kidney II (MDCKII) cells. Perfusion of rat term placenta showed accelerated transport of maraviroc in the fetal-to-maternal direction, which suggests that ABCB1/Abcb1 facilitates in situ maraviroc transport. This transplacental transport was saturable and significantly diminished after the addition of the ABCB1/Abcb1 inhibitors elacridar, zosuquidar, and ritonavir. Our results indicate that neither ABCG2 nor ABCC2 influence maraviroc pharmacokinetic but that ABCB1/Abcb1 may be partly responsible for the decreased transplacental permeability of maraviroc to the fetus. The strong affinity of maraviroc to Abcb1 found in our animal models necessitates studies in human tissue so that maraviroc pharmacokinetics in pregnant women can be fully understood. SIGNIFICANCE STATEMENT: Antiretroviral drug maraviroc shows low toxicity and is thus a good candidate for prevention of mother-to-child transmission of human immunodeficiency virus when failure of recommended therapy occurs. Using in vitro cell-based experiments and in situ dually perfused rat term placenta, we examined maraviroc interaction with the placental ABC drug transporters ABCB1, ABCG2, and ABCC2. We demonstrate for the first time that placental ABCB1 significantly reduces mother-to-fetus transport of maraviroc, which suggests that ABCB1 may be responsible for the low cord-blood/maternal-blood ratio observed in humans.
- MeSH
- ABC transportér z rodiny G, člen 2 metabolismus MeSH
- antagonisté receptoru CCR5 farmakokinetika terapeutické užití MeSH
- buňky MDCK MeSH
- HIV infekce farmakoterapie MeSH
- infekční komplikace v těhotenství farmakoterapie MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- maravirok farmakokinetika terapeutické užití MeSH
- maternofetální výměna látek * MeSH
- modely u zvířat MeSH
- P-glykoprotein metabolismus MeSH
- permeabilita MeSH
- placenta metabolismus MeSH
- placentární oběh MeSH
- plod metabolismus MeSH
- proteiny spojené s mnohočetnou rezistencí k lékům metabolismus MeSH
- psi MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- psi MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hyperuricemia depends on the balance of endogenous production and renal excretion of uric acid. Transporters for urate are located in the proximal tubule where uric acid is secreted and extensively reabsorbed: secretion is principally ensured by the highly variable ABCG2 gene. Enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT) plays a central role in purine metabolism and its deficiency is an X-linked inherited metabolic disorder associated with clinical manifestations of purine overproduction. Here we report the case of a middle-aged man with severe chronic tophaceous gout with a poor response to allopurinol and requiring repeated surgical intervention. We identified the causal mutations in the HPRT1 gene, variant c.481G>T (p.A161S), and in the crucial urate transporter ABCG2, a heterozygous variant c.421C>A (p.Q141K). This case shows the value of an analysis of the genetic background of serum uric acid.
- MeSH
- ABC transportér z rodiny G, člen 2 genetika MeSH
- chronická nemoc MeSH
- dna (nemoc) genetika metabolismus MeSH
- genetické pozadí * MeSH
- hypoxanthinfosforibosyltransferasa nedostatek genetika metabolismus MeSH
- kyselina močová metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- mutace MeSH
- nádorové proteiny genetika MeSH
- přenašeče organických aniontů genetika MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
Colorectal cancer, one of the most frequent types of cancer worldwide, has a high mortality rate. Irinotecan (CPT-11) has been approved for the treatment of advanced or metastatic disease either as a single agent or, more commonly, as part of combined chemotherapeutic regimens. Treatment with irinotecan is often accompanied by severe toxicity (e.g. neutropenia and diarrhea) that can result in treatment interruption or cessation, thus jeopardizing the patient's prognosis and quality of life. Irinotecan is bioactivated into its metabolite SN-38, which is subsequently detoxified by uridine diphosphate-glucuronosyl transferases (mainly UGT1A1). Further, ABC transporters (i.e. ABCB1, ABCC1-ABCC6, and ABCG2) are responsible for drug efflux into bile and urine whereas OATP transporters (SLCO1B1) enable its influx from blood into hepatocytes. Genetic polymorphisms in these enzymes/pumps may result in increased systemic SN-38 level, directly correlating with toxicity. Contemporary research is focused on the clinical implementation of genetic screenings for validated gene variations prior to treatment onset, allowing tailored individual doses or treatment regimens.
- MeSH
- ABC transportéry genetika MeSH
- farmakogenetika trendy MeSH
- genotyp MeSH
- glukuronosyltransferasa genetika MeSH
- individualizovaná medicína trendy MeSH
- irinotekan škodlivé účinky terapeutické užití MeSH
- jednonukleotidový polymorfismus genetika MeSH
- kolorektální nádory farmakoterapie genetika MeSH
- lidé MeSH
- metabolická inaktivace genetika MeSH
- nežádoucí účinky léčiv genetika patologie MeSH
- polypeptid C přenášející organické anionty genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Human papillomavirus (HPV) is responsible for cervical cancer, and its role in head and neck carcinoma has been reported. No drug is approved for the treatment of HPV-related diseases but cidofovir (CDV) exhibits selective antiproliferative activity. In this study, we analyzed the effects of CDV-resistance (CDVR) in two HPV(+) (SiHaCDV and HeLaCDV) and one HPV(-) (HaCaTCDV) tumor cell lines. Quantification of CDV metabolites and analysis of the sensitivity profile to chemotherapeutics was performed. Transporters expression related to multidrug-resistance (MRP2, P-gp, BCRP) was also investigated. Alterations of CDV metabolism in SiHaCDV and HeLaCDV, but not in HaCaTCDV, emerged via impairment of UMP/CMPK1 activity. Mutations (P64T and R134M) as well as down-regulation of UMP/CMPK1 expression were observed in SiHaCDV and HeLaCDV, respectively. Altered transporters expression in SiHaCDV and/or HeLaCDV, but not in HaCaTCDV, was also noted. Taken together, these results indicate that CDVR in HPV(+) tumor cells is a multifactorial process.
- MeSH
- ABC transportéry biosyntéza MeSH
- chemorezistence genetika MeSH
- cytidintrifosfát biosyntéza MeSH
- cytosin analogy a deriváty farmakologie MeSH
- fosforylace MeSH
- HeLa buňky MeSH
- infekce papilomavirem farmakoterapie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- nádorové buněčné linie MeSH
- nádory děložního čípku farmakoterapie patologie virologie MeSH
- nukleosidmonofosfátkinasa biosyntéza metabolismus MeSH
- organofosfonáty farmakologie MeSH
- Papillomaviridae MeSH
- SLC transportéry biosyntéza MeSH
- uridintrifosfát biosyntéza MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The interplays between the metabolic products of intestinal microbiota and the host signaling through xenobiotic receptors, including pregnane X receptor (PXR), are of growing interest, in the context of intestinal health and disease. A distinct class of microbial catabolites is formed from dietary tryptophan, having the indole scaffold in their core structure, which is a biologically active entity. In the current study, we examined a series of ten tryptophan microbial catabolites for their interactions with PXR signaling. Utilizing a reporter gene assay, we identified indole (IND) and indole-3-acetamide (IAD) as PXR agonists. IND and IAD induced PXR-regulated genes CYP3A4 and MDR1 in human intestinal cancer cells. Using time-resolved fluorescence resonance energy transfer, we show that IND (IC50 292 μM) and IAD (IC50 10 μM) are orthosteric ligands of PXR. Binding of PXR in its DNA response elements was enhanced by IND and IAD, as revealed by chromatin immunoprecipitation assay. We demonstrate that tryptophan microbial intestinal metabolites IND and IAD are ligands and agonists of human PXR. These findings are of particular importance in understanding the roles of microbial catabolites in human physiology and pathophysiology. Furthermore, these results are seminal in expanding potential drug repertoire through microbial metabolic mimicry.
- MeSH
- cytochrom P-450 CYP3A genetika metabolismus MeSH
- indoly metabolismus MeSH
- kultivované buňky MeSH
- kyseliny indoloctové metabolismus MeSH
- lidé MeSH
- ligandy MeSH
- nádorové buněčné linie MeSH
- P-glykoproteiny genetika metabolismus MeSH
- pregnanový X receptor agonisté genetika MeSH
- reportérové geny MeSH
- střevní mikroflóra * MeSH
- střevní sliznice * metabolismus mikrobiologie MeSH
- transfekce MeSH
- tryptofan metabolismus MeSH
- vazba proteinů MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Dna, arthritis urica, je metabolické onemocnění způsobené zánětlivou reakcí na ukládání urátových krystalů do kloubů a měkkých tkání. Chronická hyperurikémie, kauzální příčina dny, vzniká nerovnováhou mezi endogenní produkcí a exkrecí kyseliny močové. Nejčastějším mechanismem vedoucím ke vzniku hyperurikémie je snížená exkrece kyseliny močové. Transport urátu je komplexní proces zahrnující řadu transmembránových proteinů zajišťujících reabsorpci (majoritně URAT1, GLUT9) a sekreci (ABCG2) na apikální i bazolaterální straně proximálních tubulů a v případě ABCG2 i s významným podílem transportu v gastrointestinálním traktu. Nové znalosti o exkreci kyseliny močové umožnily vývoj nové strategie v léčbě hyperurikémie mechanismem blokace urátových transportérů. Znalosti genetického pozadí urikémie jsou podstatné pro včasné rozpoznání etiologie onemocnění, volbě vhodné léčby a také k monitorování compliance ze strany pacienta. Detailní vyšetření purinového metabolismu a exkrece kyseliny močové ve specializovaných laboratořích je vhodné zejména u pacientů s časným nástupem a/nebo familiárním výskytem onemocnění.
Gout, arthritis urica, is a metabolic disorder caused by an inflammatory reaction to the deposition of urate crystals into joints and soft tissues. Chronic hyperuricaemia, the cause of the gout, results in an imbalance between endogenous production and excretion of uric acid. The most common mechanism leading to hyperuricaemia is decreased excretion of uric acid. Urate transport is a complex process involving a number of transmembrane proteins that provide reabsorption (mostly URAT1, GLUT9) and secretion (ABCG2) on the apical and basolateral side of the proximal tubules. ABCG2, with a significant proportion, provides transport in the gastrointestinal tract. New knowledge on uric acid excretion has allowed the development of a new strategy in the treatment of hyperuricaemia by blocking urate transporters. Knowledge of the genetic background of uricemia is essential for early identification of the aetiology of the disease, the choice of appropriate treatment, and also the monitoring of compliance by the patient. Detailed examination of purine metabolism and uric acid excretion in specialized laboratories is particularly useful for patients with early onset and / or familial outbreaks of the disease.
- Klíčová slova
- urátové transportéry,
- MeSH
- ABC transportér z rodiny G, člen 2 fyziologie genetika MeSH
- dna (nemoc) * diagnóza epidemiologie etiologie MeSH
- hyperurikemie * diagnóza etiologie genetika MeSH
- intersticiální nefritida diagnóza genetika MeSH
- kyselina močová chemie MeSH
- Leschův-Nyhanův syndrom diagnóza genetika MeSH
- lidé MeSH
- proteiny usnadňující transport glukosy fyziologie genetika MeSH
- puriny metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- přehledy MeSH
Leflunomide (LEF) is a disease-modifying anti-rheumatic drug used for treating rheumatoid arthritis (RA). More than 50% of patients are withdrawn from LEF treatment within one year, mainly due to AEs. Importantly, it is not possible to predict which patients will respond to LEF therapy nor if adverse outcome occurs. Pharmacogenetic studies indicate an impact of single nucleotid polymorphisms (SNPs) on the variability in LEF serum levels with potential relevance to effectiveness and tolerability in individual RA patients. In vitro studies have demonstrated that cytochromes P450 (CYPs), mainly CYP1A2, CYP2C19, and CYP3A4, are involved in LEF metabolite activation. It was shown that CYP1A2*1F allele may be associated with LEF toxicity in patients with RA. In case of dihydroorotate dehydrogenase (DHODH) gene SNP (rs3213422, 19C>A), it was shown that C allele may be associated with LEF toxicity and therapeutic effect. Finally, oestrogen receptor genes SNPs in females may be associated with LEF therapy efficacy. In summary, the results of the current studies suggest a possible diagnostic value of genotyping for patients with RA as biomarkers of LEF therapy efficacy or conversely as indicators of serious side effects. In the future, it will be necessary to corroborate these results in studies with larger numbers of patients and longer follow-up. Moreover, it would be appropriate to focus on CYP2C19, ATP5A1 and PKD1L3 genes.
- MeSH
- ABC transportéry genetika metabolismus MeSH
- antirevmatika škodlivé účinky farmakokinetika MeSH
- biotransformace genetika MeSH
- farmakogenetika MeSH
- fenotyp MeSH
- genotyp MeSH
- isoxazoly škodlivé účinky farmakokinetika MeSH
- izoenzymy MeSH
- jednonukleotidový polymorfismus * MeSH
- lidé MeSH
- nádorové proteiny genetika metabolismus MeSH
- oxidoreduktasy působící na CH-CH vazby genetika metabolismus MeSH
- receptory pro estrogeny genetika metabolismus MeSH
- revmatoidní artritida diagnóza farmakoterapie MeSH
- rizikové faktory MeSH
- systém (enzymů) cytochromů P-450 genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Elevated serum urate levels cause gout and correlate with cardiometabolic diseases via poorly understood mechanisms. We performed a trans-ancestry genome-wide association study of serum urate in 457,690 individuals, identifying 183 loci (147 previously unknown) that improve the prediction of gout in an independent cohort of 334,880 individuals. Serum urate showed significant genetic correlations with many cardiometabolic traits, with genetic causality analyses supporting a substantial role for pleiotropy. Enrichment analysis, fine-mapping of urate-associated loci and colocalization with gene expression in 47 tissues implicated the kidney and liver as the main target organs and prioritized potentially causal genes and variants, including the transcriptional master regulators in the liver and kidney, HNF1A and HNF4A. Experimental validation showed that HNF4A transactivated the promoter of ABCG2, encoding a major urate transporter, in kidney cells, and that HNF4A p.Thr139Ile is a functional variant. Transcriptional coregulation within and across organs may be a general mechanism underlying the observed pleiotropy between urate and cardiometabolic traits.
- MeSH
- ABC transportér z rodiny G, člen 2 genetika MeSH
- celogenomová asociační studie MeSH
- dna (nemoc) krev epidemiologie genetika MeSH
- genetická predispozice k nemoci MeSH
- genetické lokusy MeSH
- genetické markery * MeSH
- hepatocytární jaderný faktor 1-alfa genetika MeSH
- hepatocytární jaderný faktor 4 genetika MeSH
- játra metabolismus patologie MeSH
- jednonukleotidový polymorfismus * MeSH
- kardiovaskulární nemoci krev epidemiologie genetika MeSH
- kohortové studie MeSH
- kyselina močová krev MeSH
- ledviny metabolismus patologie MeSH
- lidé MeSH
- metabolické nemoci krev epidemiologie genetika MeSH
- nádorové proteiny genetika MeSH
- orgánová specificita MeSH
- signální transdukce * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH