Uroteliální karcinom horních cest močových (UTUC) je vzácně se vyskytující onemocnění. Výsledky léčby UTUC jsou značně heterogenní, a lze je tedy obtížně predikovat. Rozhodnutí o volbě léčby rovněž znesnadňuje absence randomizovaných studií, které by se zabývaly léčbou UTUC. Přesná předpověď účinnosti léčby, výskytu komplikací a dlouhodobé morbidity je nezbytná pro informované rozhodnutí. V nedávné době byly vyvinuty prognostické instrumenty založené na statistických modelech, pomocí nichž je možné učinit nejpřesnější a nejspolehlivější předpověď. Z v současné době dostupných instrumentů jsou to nomogramy, které umožňují nejpřesnější predikci výsledků u pacientů s karcinomem. Autoři tohoto článku hodnotí prognostické faktory užívané u pacientů s UTUC (včetně klinicko-patologických parametrů a molekulárních markerů) a v současné době dostupné prediktivní instrumenty.
Upper tract urothelial carcinoma is a rare disease and the outcomes of patients with UTUC are heterogeneous and, therefore, difficult to predict. The lack of randomized trials in patients with UTUC makes decisions complex. Accurate estimation of treatment success, complications, and long-term morbidity are essential for patients to make informed medical decisions. Recently researchers have developed prognostic tools based on statistical models to obtain the most accurate and reliable predictions. Among the available decision tools, nomograms currently represent the most accurate and widely used tools for prediction of outcomes in patients with cancer. The authors of this article discuss the established prognostic factors in UTUC (including clinic-pathological features and molecular markers) and the currently available predictive tools.
- Keywords
- uroteliální karcinom horních cest močových,
- MeSH
- Neoplasm Invasiveness diagnosis pathology MeSH
- Carcinoma diagnosis surgery pathology MeSH
- Humans MeSH
- Lymph Node Excision MeSH
- Urinary Tract pathology MeSH
- Biomarkers, Tumor MeSH
- Ureteral Neoplasms * diagnosis surgery pathology MeSH
- Nephrectomy MeSH
- Nomograms * MeSH
- Postoperative Period MeSH
- Preoperative Period MeSH
- Prognosis * MeSH
- Risk Factors MeSH
- Neoplasm Staging MeSH
- Neoplasm Grading MeSH
- Ureter surgery pathology drug effects MeSH
- Urologic Surgical Procedures MeSH
- Urologic Neoplasms diagnosis surgery pathology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Review MeSH
Cílem pilotního výzkumu bylo zhodnotit validitu u tří vybraných screeningových nástrojů pro posouzení rizika pádu u hospitalizovaných seniorů na akutních oddělení interního typu. Validita byla hodnocena pomocí senzitivity, specificity, pozitivní prediktivní hodnoty a negativní prediktivní hodnoty. Výzkumný vzorek tvořilo 122 hospitalizovaných seniorů, u nichž bylo určeno riziko pádu dle Mors Fall Scale (dále MFS), modifikované škály Juráskové Zhodnocení rizika pádu u pacienta/klienta 2006 (dále Jurásková 2006) a Screeningového testu pro posouzení rizika pádu pro identifikaci pacientů ve vysokém riziku pádu (dále STRP). Následně bylo sledováno, zda u pacientů zařazených v riziku pádu k této mimořádné události po dobu jejich hospitalizace skutečně došlo či nikoli. Použitou metodou prospektivního výzkumu bylo provádění polořízených rozhovorů, studium písemných dokumentů a pozorování. Dosažené výsledky identifikovaly senzitivitu MFS 91 %, Jurásková 2006 100 %, STRP 100%. Specificita byla u MFS 2 %, Jurásková 2006 7 %, STRP 2 %. Pozitivní prediktivní hodnota MFS 17 %, Jurásková 2006 18 %, STRP 17 %. Negativní prediktivní hodnota MFS 50 %, Jurásková 2006 100 %, STRP 100 %. Výsledky naznačují, že je třeba dalších výzkumů zaměřených nejen na ověření funkčnosti posuzovaných škál, ale i na posouzení rizikových faktorů použitých ve všech třech hodnocených nástrojích v konkrétní populaci hospitalizovaných seniorů a vytvořit tak nový nástroj nebo modifikovat již využívaný, který by byl pro české gerontologické ošetřovatelství funkční a jednoduše aplikovatelný.
The goal of this pilot study was to assess the validity of the three selected screening tools that assess the risk of falls in hospitalized elderly patients in acute care settings. Validity was assessed using sensitivity, specificity, positive predictive value and negative predictive values. The research sample consisted of 122 hospitalized seniors, whose risk of falling was assessed using the Mors Fall Scale (further MFS), the modified scale patient/client fall risk assessment index by Jurásková (further Jurásková 2006) and Screening test for fall risk assessment to identify patients at high risk of falling (further STRP). Subsequently, it was observed whether the patients fell or not. The research methods used were interviews with patients, the study of written documents and observations. The results identified a sensitivity of 91% of MFS, Jurásková 2006 100%, STRP 100%. Specificity was at MFS 2%, Jurásková 2006 7%, STRP 2%. MFS Positive predictive value 17%, Jurásková 2006 18%, STRP 17%. MFS 50% Negative predictive value, Jurásková 2006 100%, STRP100%. The results suggest that further research is required aimed not only at verifying the functionality of the assessment tools used, but also to assess the risk factors used in all three instruments. Evaluating the risk factors in a specific population of hospitalized elderly could lead to the creation of a new tool, or the modification of an existing index, which would be functional and easily applicable for Czech Geriatric Nursing.
- Keywords
- riziko pádu, pád, hodnotící nástroj, validita, senior,
- MeSH
- Risk Assessment methods statistics & numerical data MeSH
- Hospitalization MeSH
- Frail Elderly MeSH
- Humans MeSH
- Predictive Value of Tests MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Sensitivity and Specificity MeSH
- Statistics as Topic MeSH
- Check Tag
- Humans MeSH
- Aged, 80 and over MeSH
- Aged MeSH
Mentální postižení dětí i dospělých představuje závažný zdravotní i sociální problém. Příčiny mentální retardace mohou být jak vrozené, tak i získané, neobjasněných však zůstává až 75 % případů. Moderní pokrok v cytogenetických rozlišovacích metodách dovolil objasnit etiologii až 10 % dosud nejasných mentálních retardací vyšetřením tzv. subtelomerických přestaveb, které nejsou detekovatelné klasickým cytogenetickým vyšetřením. Autoři referují o možnostech této nové diagnostiky a popisují kazuistiku 4letého chlapce sledovaného od kojeneckého věku s klinickými projevy těžké mentální retardace. Při zavedení multiprobe FISH metody autoři pro upřesnění genetické diagnózy indikovali vyšetření subtelomerických oblastí a zjistili, že se u chlapce jedná o mužský karyotyp s derivovaným chromozomem vzniklým z kryptické translokace mezi chromozomy 8 a 12 maternálního (od matky) původu. Matka dítěte je zdravá a je přenašečkou vyvážené translokace chromozomů 8 a 12. V České republice disponuje možnostmi uvedené diagnostiky naše pracoviště a Ústav biologie a lékařské genetiky UK 2. LF a FN Praha-Motol.
Mental retardation in children and adults is a serious medical and social problem. There are many causes of mental retardation, but specific reason is found in only 25 % of cases. Recent progress in cytogenetic methods explained etiology of 10 % before unexplained mental retardation due to detection of subtelomeric rearrangements, not visible by conventional cytogenetic analysis. The authors refer about this modern diagnostic tools and present a case report of 4-years-old boy, who was investigated since infancy because of clinical symptoms of severe mental retardation. Only at the age of 4 years, when multiprobe FISH method was introduced to specify genetic diagnostic the authors were able to identify the subtelomeric deletion of chromozome 8 and telomeric trisomy of chromozome 12 – deletion in subtelomeric area 8p and trisomy in telomeric area 12p, which the child inherited from his healthy mother. Cytogenetic examination of subtelomeric rearrangement of chromozomes provide only two hospitals in Czech Republic – our department in Ostrava and Department of Biology and Medical Genetics University hospital Motol and 2nd Faculty of Medicine, Charles University Prague.
- Keywords
- cytogenetické rozlišovací metody, FISH, subtelomerická přestavba chromozomů,
- MeSH
- Chromosome Aberrations MeSH
- Cytogenetic Analysis methods utilization MeSH
- Gene Deletion MeSH
- Genetic Testing MeSH
- Gene Rearrangement MeSH
- In Situ Hybridization, Fluorescence MeSH
- Karyotyping methods MeSH
- Humans MeSH
- Chromosome Mapping MeSH
- Intellectual Disability diagnosis etiology genetics MeSH
- Child, Preschool MeSH
- Pedigree MeSH
- Telomere genetics MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Child, Preschool MeSH
- Publication type
- Case Reports MeSH
- Review MeSH
Mutations in the first nucleotide of exons (E(+1)) mostly affect pre-mRNA splicing when found in AG-dependent 3' splice sites, whereas AG-independent splice sites are more resistant. The AG-dependency, however, may be difficult to assess just from primary sequence data as it depends on the quality of the polypyrimidine tract. For this reason, in silico prediction tools are commonly used to score 3' splice sites. In this study, we have assessed the ability of sequence features and in silico prediction tools to discriminate between the splicing-affecting and non-affecting E(+1) variants. For this purpose, we newly tested 16 substitutions in vitro and derived other variants from literature. Surprisingly, we found that in the presence of the substituting nucleotide, the quality of the polypyrimidine tract alone was not conclusive about its splicing fate. Rather, it was the identity of the substituting nucleotide that markedly influenced it. Among the computational tools tested, the best performance was achieved using the Maximum Entropy Model and Position-Specific Scoring Matrix. As a result of this study, we have now established preliminary discriminative cut-off values showing sensitivity up to 95% and specificity up to 90%. This is expected to improve our ability to detect splicing-affecting variants in a clinical genetic setting.
- MeSH
- Agammaglobulinemia genetics MeSH
- Point Mutation * MeSH
- Exons MeSH
- Genetic Diseases, X-Linked genetics MeSH
- HeLa Cells MeSH
- Humans MeSH
- RNA Splice Sites * MeSH
- Models, Genetic MeSH
- Molecular Sequence Data MeSH
- Computer Simulation MeSH
- Sequence Analysis, DNA MeSH
- RNA Splicing MeSH
- Software * MeSH
- Protein-Tyrosine Kinases genetics MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
SUMMARY: The New E-Resource for Drug Discovery (NERDD) is a quickly expanding web portal focused on the provision of peer-reviewed in silico tools for drug discovery. NERDD currently hosts tools for predicting the sites of metabolism (FAME) and metabolites (GLORY) of small organic molecules, for flagging compounds that are likely to interfere with biological assays (Hit Dexter), and for identifying natural products and natural product derivatives in large compound collections (NP-Scout). Several additional models and components are currently in development. AVAILABILITY AND IMPLEMENTATION: The NERDD web server is available at https://nerdd.zbh.uni-hamburg.de. Most tools are also available as software packages for local installation.
Participation in muscle strengthening activities is a less examined component of public health physical activity guidelines for children and youth compared to participation in physical activity. In part, the lack of focus on strength is associated with the difficultly of measuring strength activities during participation. The aim of this pilot study was to develop and provide evidence of the concurrent and predictive validity of the Strength Observation during Vaulting (SOV) tool. Six female youth (4 with a disability and 2 without a disability) ranging in age from 11 - 22 years (Mage = 14.2 y, SD = 4.0) participating in a 5-day inclusive equestrian vaulting camp were recruited. Participants completed three measures of strength, and video of vaulters engaging in camp activities was coded using the System for Observing Fitness Instruction Time (SOFIT) and SOV tools. From a linear regression model (significant p = .020), the three measures of strength accounted for 98.7% of the shared variance with time spent in SOV levels 4 and 5. Bivariate correlation coefficients comparing SOV levels 4 and 5 and moderate-vigorous physical activity (MVPA) from SOFIT were r = .73 for all contexts, r = .89 for floor-work, r = .64 for barrel vaulting, r = .76 for horse vaulting, and r = .81 for stable chores. The predictive and concurrent validity of the SOV tool was more than adequate. Based on these results, the systematic observation is a feasible approach to assess engagement in strength activities during vaulting.
- MeSH
- Child MeSH
- Gymnastics physiology MeSH
- Horses MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Para-Athletes MeSH
- Pilot Projects MeSH
- Sitting Position MeSH
- Reproducibility of Results MeSH
- Athletic Performance MeSH
- Sports for Persons with Disabilities * physiology MeSH
- Muscle Strength * MeSH
- Behavior Observation Techniques MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Publication type
- Evaluation Study MeSH
PURPOSE: To compare the ability of Prostate Health Index (PHI) to diagnose csPCa, with that of total PSA, PSA density (PSAD) and the multiparametric magnetic resonance (mpMRI) of the prostate. METHODS: We analysed a group of 395 men planned for a prostate biopsy who underwent a mpMRI of the prostate evaluated using the PIRADS v1 criteria. All patients had their PHI measured before prostate biopsy. In patients with an mpMRI suspicious lesions, an mpMRI/ultrasound software fusion-guided biopsy was performed first, with 12 core systematic biopsy performed in all patients. A ROC analysis was performed for PCa detection for total PSA, PSAD, PIRADS score and PHI; with an AUC curve calculated for all criteria and a combination of PIRADS score and PHI. Subsequent sub-analyses included patients undergoing first and repeat biopsy. RESULTS: The AUC for predicting the presence of csPCa in all patients was 59.5 for total PSA, 69.7 for PHI, 64.9 for PSAD and 62.5 for PIRADS. In biopsy naive patients it was 61.6 for total PSA, 68.9 for PHI, 64.6 for PSAD and 63.1 for PIRADS. In patients with previous negative biopsy the AUC for total PSA, PHI, PSAD and PIRADS was 55.4, 71.2, 64.4 and 69.3, respectively. Adding of PHI to PIRADS increased significantly (p = 0.007) the accuracy for prediction of csPCa. CONCLUSION: Prostate Health Index could serve as a tool in predicting csPCa. When compared to the mpMRI, it shows comparable results. The PHI cannot, however, help us guide prostate biopsies in any way, and its main use may, therefore, be in pre-MRI or pre-biopsy triage.
- MeSH
- Middle Aged MeSH
- Humans MeSH
- Multiparametric Magnetic Resonance Imaging * MeSH
- Prostatic Neoplasms diagnostic imaging pathology MeSH
- Predictive Value of Tests MeSH
- Retrospective Studies MeSH
- Aged MeSH
- Image-Guided Biopsy MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Comparative Study MeSH
Polygenetic Risk Scores are used to evaluate an individual's vulnerability to developing specific diseases or conditions based on their genetic composition, by taking into account numerous genetic variations. This article provides an overview of the concept of Polygenic Risk Scores (PRS). We elucidate the historical advancements of PRS, their advantages and shortcomings in comparison with other predictive methods, and discuss their conceptual limitations in light of the complexity of biological systems. Furthermore, we provide a survey of published tools for computing PRS and associated resources. The various tools and software packages are categorized based on their technical utility for users or prospective developers. Understanding the array of available tools and their limitations is crucial for accurately assessing and predicting disease risks, facilitating early interventions, and guiding personalized healthcare decisions. Additionally, we also identify potential new avenues for future bioinformatic analyzes and advancements related to PRS.
- MeSH
- Genome-Wide Association Study methods MeSH
- Genetic Predisposition to Disease * MeSH
- Genetic Risk Score MeSH
- Risk Assessment methods MeSH
- Humans MeSH
- Multifactorial Inheritance * MeSH
- Risk Factors MeSH
- Software * MeSH
- Computational Biology methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Příspěvek prezentuje výsledky vyhledání a analýzy odborných a vědeckých příspěvků, které využívají sebehodnocení strachu z bolesti u dětí. K vyhledání relevantních dat byly využity licencované i volně přístupné databáze Bibliografia Medica Czechoslovaca, Med-line, Scopus, Ebsco, Google Scholar, Science Direct, Web of Science. Vyhledávání bylo provedeno za období roku 2000–2013. K posouzení strachu z bolesti u dětí bylo identifikováno sedm vhodných sebehodnotících nástrojů: State-Trait Anxiety Inventory for Children (STAIC) – Speilberger et al. (1973), Hospital Fears Rating Scale (HFRS) – Melamed & Siegel (1975), Venham Picture Test (VPT) – Venham, Bengston, & Cipes (1977), Visual Analog Scale (VAS) – Gift (1989), Sherman et al. (2006), Wewers & Lowe (1990), Child Medical Fear Scale – Broome & Hellier (1987), Broome et al. (1988), Children’s Fear Scale (CFS) – McMurtry et al. (2011), Fear Survey Schedule for Children – Revised (FSSC-R) – Ollendick (1983). Analýza výsledků neprokázala jednoznačnou spolehlivost jediného hodnotícího nástroje hodnocení strachu z bolesti u dítěte. Nejlepší výpovědní hodnotu má posouzení s využitím kombinace hodnotících nástrojů zaměřených jak na sebehodnocení dítěte, tak na posouzení kognitivních, emocionálních, fyziologických a behaviorálních reakcí dítěte na očekávání bolesti.
This paper presents the results of find out and to analyse recollected technical and scientific contributions, which use self-report assessment fear of pain in children. For searching out valid data recollection we used electronically licensed and freely available databases Bibliografia Medica Czechoslovaca, Medline, Scopus, Ebsco, Google Scholar, Science Direct, Web of Science. Searching was done in the period of 2000–2013. For an assessment fear of pain in children was identified seven suitable self-report assessment tools: State-Trait Anxiety Inventory for Children (STAIC) – Speilberger et al. (1973), Hospital Fears Rating Scale (HFRS) – Melamed & Siegel (1975), Venham Picture Test (VPT) – Venham, Bengston, & Cipes (1977), Visual Analog Scale (VAS) – Gift (1989), Sherman et al. (2006), Wewers & Lowe (1990), Child Medical Fear Scale – Broome & Hellier (1987), Broome et al. (1988), Children’s Fear Scale (CFS) – McMurtry et al. (2011), Fear Survey Schedule for Children – Revised (FSSC-R) – Ollendick, (1983). The analyses of outcomes didn’t prove definite reliability of single assessment tool for assessment fear of pain in children. The best predictive value of the assessment using a combination of assessment tools focused to self-report, and to assessment the cognitive, emotional, physiological and behavioural responses to the expectations of the child’s pain.
- MeSH
- Pain * psychology MeSH
- Child MeSH
- Humans MeSH
- Nursing Diagnosis MeSH
- Data Collection MeSH
- Fear * psychology MeSH
- Anxiety * diagnosis psychology MeSH
- Check Tag
- Child MeSH
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
Although Campylobacter jejuni is the pathogen responsible for the most common foodborne illness, tracing of the infection source remains challenging due to its highly variable genome. Therefore, one of the aim of the study was to compare three genotyping methods (MLST, PFGE, and mP-BIT) to determine the most effective genotyping tool. C. jejuni strains were divided into 4 clusters based on strain similarity in the cgMLST dendrogram. Subsequently, the dendrograms of the 3 tested methods were compared to determine the accuracy of each method compared to the reference cgMLST method. Moreover, a cost-benefit analysis has showed that MLST had the highest inverse discrimination index (97%) and required less workflow, time, fewer consumables, and low bacterial sample quantity. PFGE was shown to be obsolete both because of its low discriminatory power and the complexity of the procedure. Similarly, mP‐BIT showed low separation results, which was compensated by its high availability. Therefore, our data showed that MLST is the optimal tool for genotyping C. jejuni. Another aim was to compare the antimicrobial resistance to ciprofloxacin, erythromycin, and tetracycline in C. jejuni strains isolated from human, water, air, food, and animal samples by two gene sequence-based prediction methods and to compare them with the actual susceptibility of C. jejuni strains using the disc diffusion method. Both tools, ResFinder and RGI, synchronously predict the antimicrobial susceptibility of C. jejuni and either can be used.
- MeSH
- Anti-Bacterial Agents pharmacology MeSH
- Drug Resistance, Bacterial genetics MeSH
- Campylobacter jejuni * genetics MeSH
- Genotype MeSH
- Campylobacter Infections * microbiology MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Multilocus Sequence Typing MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH